Suppr超能文献

通过整合基因关联和蛋白质相互作用网络中的信息流来关联疾病。

Relating diseases by integrating gene associations and information flow through protein interaction network.

作者信息

Hamaneh Mehdi Bagheri, Yu Yi-Kuo

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States of America.

出版信息

PLoS One. 2014 Oct 31;9(10):e110936. doi: 10.1371/journal.pone.0110936. eCollection 2014.

Abstract

Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases. We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate, suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases. Although not needed for understanding this paper, the raw results are available for download for further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/.

摘要

识别相似疾病可能有助于更深入地了解其潜在病因,甚至可能暗示潜在的治疗方法。为此,有必要有一种能反映潜在分子相互作用和生物途径的相似性度量方法。因此,我们设计了一种基于网络的度量方法,该方法可以部分实现这一目标。我们的方法通过使用从疾病到蛋白质相互作用网络再返回的信息流,为所有蛋白质(以及相应的编码基因)赋予权重。然后,两种疾病之间的相似性定义为它们相应权重向量之间夹角的余弦值。所提出的方法还提供了一种通过使用赋予基因的权重对每种疾病进行富集分析来推断疾病-途径关联的方法。通过计算2534种疾病之间的成对相似性,我们表明我们的疾病相似性度量与在同一疾病家族中发现这些疾病的概率密切相关,更重要的是,与共享生物途径的概率密切相关。我们还将我们的结果与MimMiner的结果进行了比较,MimMiner是一种为疾病分配成对相似性分数的文本挖掘方法。我们发现这两种方法的结果是互补的。研究还表明,基于疾病的相似性对疾病进行聚类并对聚类中心进行富集分析,显著提高了术语关联率,这表明聚类中心比疾病本身更能代表生物途径。这支持了这样一种观点,即我们的相似性度量是导致疾病的生物过程相关性的良好指标。虽然理解本文不需要这些原始结果,但原始结果可在ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/ 下载以供进一步研究使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ffb/4216010/4c95495c304f/pone.0110936.g001.jpg

相似文献

1
Relating diseases by integrating gene associations and information flow through protein interaction network.
PLoS One. 2014 Oct 31;9(10):e110936. doi: 10.1371/journal.pone.0110936. eCollection 2014.
2
DeCoaD: determining correlations among diseases using protein interaction networks.
BMC Res Notes. 2015 Jun 6;8:226. doi: 10.1186/s13104-015-1211-z.
3
Fusing literature and full network data improves disease similarity computation.
BMC Bioinformatics. 2016 Aug 30;17(1):326. doi: 10.1186/s12859-016-1205-4.
4
Constructing Disease Similarity Networks Based on Disease Module Theory.
IEEE/ACM Trans Comput Biol Bioinform. 2020 May-Jun;17(3):906-915. doi: 10.1109/TCBB.2018.2817624. Epub 2018 Mar 21.
5
Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
Math Biosci. 2019 Sep;315:108229. doi: 10.1016/j.mbs.2019.108229. Epub 2019 Jul 16.
7
Network-based prediction and knowledge mining of disease genes.
BMC Med Genomics. 2015;8 Suppl 2(Suppl 2):S9. doi: 10.1186/1755-8794-8-S2-S9. Epub 2015 May 29.
8
Robust and accurate data enrichment statistics via distribution function of sum of weights.
Bioinformatics. 2010 Nov 1;26(21):2752-9. doi: 10.1093/bioinformatics/btq511. Epub 2010 Sep 8.

引用本文的文献

1
Exploring novel disease-disease associations based on multi-view fusion network.
Comput Struct Biotechnol J. 2023 Feb 24;21:1807-1819. doi: 10.1016/j.csbj.2023.02.038. eCollection 2023.
2
Computational Methods and Applications for Identifying Disease-Associated lncRNAs as Potential Biomarkers and Therapeutic Targets.
Mol Ther Nucleic Acids. 2020 Sep 4;21:156-171. doi: 10.1016/j.omtn.2020.05.018. Epub 2020 May 21.
3
Computational Methods for Identifying Similar Diseases.
Mol Ther Nucleic Acids. 2019 Dec 6;18:590-604. doi: 10.1016/j.omtn.2019.09.019. Epub 2019 Sep 28.
4
The multiplex network of human diseases.
NPJ Syst Biol Appl. 2019 Apr 23;5:15. doi: 10.1038/s41540-019-0092-5. eCollection 2019.
5
Mechanism-based disease similarity.
J Rare Dis Res Treat. 2016;1(3):1-4. doi: 10.29245/2572-9411/2016/3.1044. Epub 2016 Oct 18.
6
InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
BMC Genomics. 2018 Jan 19;19(Suppl 1):919. doi: 10.1186/s12864-017-4338-6.
8
IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity.
Oncotarget. 2016 Jul 26;7(30):47864-47874. doi: 10.18632/oncotarget.10012.
9
Understanding Genotype-Phenotype Effects in Cancer via Network Approaches.
PLoS Comput Biol. 2016 Mar 10;12(3):e1004747. doi: 10.1371/journal.pcbi.1004747. eCollection 2016 Mar.
10
Analytical solution and scaling of fluctuations in complex networks traversed by damped, interacting random walkers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(5):052803. doi: 10.1103/PhysRevE.92.052803. Epub 2015 Nov 5.

本文引用的文献

2
The Comparative Toxicogenomics Database: update 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D1104-14. doi: 10.1093/nar/gks994. Epub 2012 Oct 23.
3
Viral perturbations of host networks reflect disease etiology.
PLoS Comput Biol. 2012;8(6):e1002531. doi: 10.1371/journal.pcbi.1002531. Epub 2012 Jun 28.
4
MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database.
Database (Oxford). 2012 Mar 20;2012:bar065. doi: 10.1093/database/bar065. Print 2012.
5
Information flow in interaction networks II: channels, path lengths, and potentials.
J Comput Biol. 2012 Apr;19(4):379-403. doi: 10.1089/cmb.2010.0228. Epub 2012 Mar 12.
6
Disease Ontology: a backbone for disease semantic integration.
Nucleic Acids Res. 2012 Jan;40(Database issue):D940-6. doi: 10.1093/nar/gkr972. Epub 2011 Nov 12.
7
ppiTrim: constructing non-redundant and up-to-date interactomes.
Database (Oxford). 2011 Aug 27;2011:bar036. doi: 10.1093/database/bar036. Print 2011.
8
Identification of ADAMTS18 as a gene mutated in Knobloch syndrome.
J Med Genet. 2011 Sep;48(9):597-601. doi: 10.1136/jmedgenet-2011-100306.
9
Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.
PLoS One. 2011;6(6):e20284. doi: 10.1371/journal.pone.0020284. Epub 2011 Jun 14.
10
Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses.
Neuron. 2011 Apr 14;70(1):20-33. doi: 10.1016/j.neuron.2011.03.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验