Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, United Kingdom.
Conserv Biol. 2015 Apr;29(2):503-12. doi: 10.1111/cobi.12416. Epub 2014 Oct 31.
Systematic conservation planning optimizes trade-offs between biodiversity conservation and human activities by accounting for socioeconomic costs while aiming to achieve prescribed conservation objectives. However, the most cost-efficient conservation plan can be very dissimilar to any other plan achieving the set of conservation objectives. This is problematic under conditions of implementation uncertainty (e.g., if all or part of the plan becomes unattainable). We determined through simulations of parallel implementation of conservation plans and habitat loss the conditions under which optimal plans have limited chances of implementation and where implementation attempts would fail to meet objectives. We then devised a new, flexible method for identifying conservation priorities and scheduling conservation actions. This method entails generating a number of alternative plans, calculating the similarity in site composition among all plans, and selecting the plan with the highest density of neighboring plans in similarity space. We compared our method with the classic method that maximizes cost efficiency with synthetic and real data sets. When implementation was uncertain--a common reality--our method provided higher likelihood of achieving conservation targets. We found that χ, a measure of the shortfall in objectives achieved by a conservation plan if the plan could not be implemented entirely, was the main factor determining the relative performance of a flexibility enhanced approach to conservation prioritization. Our findings should help planning authorities prioritize conservation efforts in the face of uncertainty about future condition and availability of sites.
系统保护规划通过考虑社会经济成本,在实现规定保护目标的同时,优化了生物多样性保护与人类活动之间的权衡取舍。然而,最具成本效益的保护计划可能与实现既定保护目标的任何其他计划非常不同。在实施不确定性的情况下(例如,如果计划的全部或部分无法实现),这是有问题的。我们通过模拟保护计划和栖息地丧失的并行实施,确定了最优计划实施机会有限的条件,以及实施尝试无法实现目标的条件。然后,我们设计了一种新的、灵活的方法来确定保护优先级和安排保护行动。该方法包括生成多个替代计划,计算所有计划中站点组成的相似性,并选择相似空间中相邻计划密度最高的计划。我们将我们的方法与经典方法进行了比较,经典方法是用合成和真实数据集最大化成本效率。当实施不确定时——这是一种常见的现实情况——我们的方法提高了实现保护目标的可能性。我们发现,如果一个保护计划不能完全实施,那么 χ 是衡量保护计划实现目标不足的一个指标,这是决定保护优先级灵活性增强方法相对性能的主要因素。我们的研究结果应该有助于规划当局在未来条件和地点可用性不确定的情况下优先考虑保护工作。