Wang Xueying, Wang Jin
a Department of Mathematics , Washington State University , Pullman , WA 99164 , USA.
J Biol Dyn. 2015;9 Suppl 1:233-61. doi: 10.1080/17513758.2014.974696. Epub 2014 Nov 3.
In this work, we propose novel epidemic models (named, susceptible-infected-recovered-susceptible-bacteria) for cholera dynamics by incorporating a general formulation of bacteria growth and spatial variation. In the first part, a generalized ordinary differential equation (ODE) model is presented and it is found that bacterial growth contributes to the increase in the basic reproduction number, [Formula: see text]. With the derived basic reproduction number, we analyse the local and global dynamics of the model. Particularly, we give a rigorous proof on the endemic global stability by employing the geometric approach. In the second part, we extend the ODE model to a partial differential equation (PDE) model with the inclusion of diffusion to capture the movement of human hosts and bacteria in a heterogeneous environment. The disease threshold of this PDE model is studied again by using the basic reproduction number. The results on the threshold dynamics of the ODE and PDE models are compared, and verified through numerical simulation. Additionally, our analysis shows that incorporating diffusive spatial spread does not produce a Turing instability when [Formula: see text] associated with the ODE model is less than the unity.
在这项工作中,我们通过纳入细菌生长和空间变异的一般公式,提出了用于霍乱动态的新型流行模型(称为易感-感染-康复-易感-细菌模型)。在第一部分,提出了一个广义常微分方程(ODE)模型,发现细菌生长导致基本再生数[公式:见原文]增加。利用推导得到的基本再生数,我们分析了该模型的局部和全局动态。特别地,我们采用几何方法对地方病全局稳定性给出了严格证明。在第二部分,我们将ODE模型扩展为一个偏微分方程(PDE)模型,纳入扩散以捕捉人类宿主和细菌在异质环境中的移动。再次使用基本再生数研究了该PDE模型的疾病阈值。比较了ODE和PDE模型阈值动态的结果,并通过数值模拟进行了验证。此外,我们的分析表明,当与ODE模型相关的[公式:见原文]小于1时,纳入扩散的空间传播不会产生图灵不稳定性。