Weymann Alexander, Patil Nikhil Prakash, Sabashnikov Anton, Jungebluth Philipp, Korkmaz Sevil, Li Shiliang, Veres Gabor, Soos Pal, Ishtok Roland, Chaimow Nicole, Pätzold Ines, Czerny Natalie, Schies Carsten, Schmack Bastian, Popov Aron-Frederik, Simon André Rüdiger, Karck Matthias, Szabo Gabor
Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany.
Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, London, United Kingdom.
PLoS One. 2014 Nov 3;9(11):e111591. doi: 10.1371/journal.pone.0111591. eCollection 2014.
A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts.
We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions.
Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks.
Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.
生物人工心脏是移植或机械左心室支持的一种理论替代方案。保留结构和脉管系统的去细胞化天然心脏可为器官再生提供无细胞组织平台。我们试图在人类尺寸的猪心脏中开发一种组织工程化全心脏新支架。
我们在改良的Langendorff循环中通过冠状动脉灌注离子去污剂对猪心脏(n = 10)进行去细胞化处理。我们通过组织学、透射电子显微镜和荧光显微镜确认去细胞化,用分光光度法定量残留DNA,并通过体外左心室压力/容积研究评估生物力学稳定性,所有这些均与对照组进行比较。然后,我们将去细胞化的猪心脏安装在生物反应器中,并在模拟生理条件下用小鼠新生心肌细胞和人脐带来源的内皮细胞(HUVEC)重新接种。
去细胞化心脏缺乏细胞内成分,但保留了特定的胶原纤维、蛋白聚糖、弹性蛋白和机械完整性;定量DNA分析表明,与对照组相比DNA显著减少(82.6±3.2 ng DNA/mg组织 vs. 473.2±13.4 ng DNA/mg组织,p<0.05)。重新细胞化的猪全心脏新支架在10天时显示冠状动脉脉管系统重新内皮化以及可测量的内在心肌电活动,灌注器官培养维持长达3周。
人类尺寸的去细胞化猪心脏提供了一个有前景的组织工程平台,可能会带来未来治疗心力衰竭的临床策略。