Yousif Ammar, Jamal Mohamed A, Raad Issam
Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Adv Exp Med Biol. 2015;830:157-79. doi: 10.1007/978-3-319-11038-7_10.
Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections.
在临床实践中,已使用不同类型的中心静脉导管(CVC)来改善慢性病患者和重症患者的生活质量。不幸的是,留置装置通常与微生物生物膜相关,最终导致导管相关血流感染(CLABSI)。据估计,美国每年发生25万至40万例CLABSI,发生率为每1000个CVC日1.5例,死亡率为12%至25%。护理CLABSI患者的年度成本在2.96亿美元至23亿美元之间。
在临床环境中,生物膜形成发生在生物和非生物表面。人们已经进行了广泛的研究来了解生物膜的形成,包括不同的生物膜发育阶段、生物膜基质组成、群体感应调节的生物膜形成、生物膜分散(及其临床意义)以及与多微生物感染相关的多物种生物膜。当微生物通过诸如CVC之类的医疗装置在人类宿主体内形成成熟的生物膜时,感染会对抗生素治疗产生耐药性,并可能发展成慢性病。因此,许多技术已被用于通过针对生物膜成熟的不同阶段来预防生物膜的形成。其他方法已被用于诊断和治疗已确诊的CLABSI病例。
拔除导管是导管相关菌血症的传统处理方法;然而,该操作本身具有较高的机械并发症风险。挽救导管有助于将这些并发症降至最低。
在本文中,我们概述了微生物生物膜的形成;描述了各种遗传决定因素、粘附蛋白、细胞器、生物膜形成机制、多微生物感染以及留置血管内导管上与生物膜相关的感染的参与情况;并描述了导管相关血流感染的诊断、处理和预防。