文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants.

作者信息

Kadirvelu Lohita, Sivaramalingam Sowmiya Sri, Jothivel Deepsikha, Chithiraiselvan Dhivia Dharshika, Karaiyagowder Govindarajan Deenadayalan, Kandaswamy Kumaravel

机构信息

Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India.

出版信息

Curr Res Microb Sci. 2024 Mar 7;6:100231. doi: 10.1016/j.crmicr.2024.100231. eCollection 2024.


DOI:10.1016/j.crmicr.2024.100231
PMID:38510214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10951465/
Abstract

Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/0de01df9a157/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/061c1c45705e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/9e979ad59e1a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/96f393fd096d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/755bc2851a28/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/f85fab1a6407/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/25c701e5cf81/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/0de01df9a157/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/061c1c45705e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/9e979ad59e1a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/96f393fd096d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/755bc2851a28/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/f85fab1a6407/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/25c701e5cf81/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/435e/10951465/0de01df9a157/gr6.jpg

相似文献

[1]
A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants.

Curr Res Microb Sci. 2024-3-7

[2]
Biofilm in implant infections: its production and regulation.

Int J Artif Organs. 2005-11

[3]
Interventions for replacing missing teeth: antibiotics at dental implant placement to prevent complications.

Cochrane Database Syst Rev. 2013-7-31

[4]
Recent Progress in antibacterial hydrogel coatings for targeting biofilm to prevent orthopedic implant-associated infections.

Front Microbiol. 2023-12-22

[5]
The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin.

Elife. 2022-7-7

[6]
Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro.

J Mol Med (Berl). 2020-2

[7]
Evaluation of biofilm colonization on multi-part dental implants in a rat model.

BMC Oral Health. 2021-6-18

[8]
Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections.

Molecules. 2024-3-6

[9]
Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications.

J Funct Biomater. 2023-11-2

[10]
New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's).

Biofouling. 2021-1

引用本文的文献

[1]
Engineering copper and copper-based materials for a post-antibiotic era.

Front Bioeng Biotechnol. 2025-8-6

[2]
Characterization of Bacterial Biofilm Composition in Occluded Plastic Biliary Stents.

Clin Exp Gastroenterol. 2025-8-7

[3]
Electrospinning Enables Opportunity for Green and Effective Antibacterial Coatings of Medical Devices.

J Funct Biomater. 2025-7-6

[4]
Biofilms and oral health: nanotechnology for biofilm control.

Discov Nano. 2025-7-16

[5]
Phage-Antibiotic Synergy Enhances Biofilm Eradication and Survival in a Zebrafish Model of Infection.

Int J Mol Sci. 2025-6-1

[6]
Challenges and Opportunities: Interplay between Infectious Disease and Antimicrobial Resistance in Medical Device Surface Applications.

ACS Omega. 2025-5-20

[7]
Antibacterial MXenes: An emerging non-antibiotic paradigm for surface engineering of orthopedic and dental implants.

Bioact Mater. 2025-5-12

[8]
Case Report: Moderate-to-severe paravalvular leak regurgitation after recurrent prosthetic valve endocarditis in a patient with a double-chambered right ventricle associated with a restricted membranous ventricular septal defect.

Front Cardiovasc Med. 2025-5-14

[9]
: A Review of the Pathogenesis and Virulence Mechanisms.

Antibiotics (Basel). 2025-5-6

[10]
Silver Nanoparticles and Antibiotics: A Promising Synergistic Approach to Multidrug-Resistant Infections.

Microorganisms. 2025-4-21

本文引用的文献

[1]
Molecular Docking Reveals Critical Residues in Cyr1 for Peptidoglycan Recognition and Hyphal Growth.

ACS Infect Dis. 2023-7-14

[2]
Reduction of biofilm formation of Escherichia coli by targeting quorum sensing and adhesion genes using the CRISPR/Cas9-HDR approach, and its clinical application on urinary catheter.

J Infect Public Health. 2023-8

[3]
Modulation of Pseudomonas aeruginosa quorum sensing by ajoene through direct competition with small RNAs for binding at the proximal site of Hfq - A structure-based perspective.

Gene. 2023-8-15

[4]
Bioactive surface coating for preventing mechanical heart valve thrombosis.

J Thromb Haemost. 2023-9

[5]
Patient Care and Surgical Training During Armed Conflict: Experiences and Perspectives of Surgical Residents in Ukraine.

Ann Surg. 2023-7-1

[6]
Antibacterial coatings on orthopedic implants.

Mater Today Bio. 2023-2-15

[7]
Curcumin and 10-undecenoic acid as natural quorum sensing inhibitors of LuxS/AI-2 of Bacillus subtilis and LasI/LasR of Pseudomonas aeruginosa.

Food Res Int. 2023-3

[8]
Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review.

Front Plant Sci. 2023-1-12

[9]
Antibacterial Electrodeposited Copper-Doped Calcium Phosphate Coatings for Dental Implants.

J Funct Biomater. 2022-12-29

[10]
The effectiveness of newly synthesized quaternary ammonium salts differing in chain length and type of counterion against priority human pathogens.

Sci Rep. 2022-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索