Suppr超能文献

Avian retroviral protease and cellular aspartic proteases are distinguished by activities on peptide substrates.

作者信息

Kotler M, Danho W, Katz R A, Leis J, Skalka A M

机构信息

Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111.

出版信息

J Biol Chem. 1989 Feb 25;264(6):3428-35.

PMID:2536748
Abstract

The avian sarcoma/leukemia virus protease (PR), purified from avian myeloblastosis virus has a native molecular mass of 26 kDa, suggesting a dimer structure. The enzymatic activity of PR has been characterized using synthetic peptide substrates. PR is most active at pH 5.5, 35 degrees C and 2-3 M NaCl. Under these conditions PR cleaves decapeptides which are resistant in low ionic strength. This high, nonphysiological, salt concentration also increases the proteolytic activity of a cellular aspartic protease, pepsin. PR and pepsin show additional similarities: they both cleave a synthetic decapeptide at the same Tyr-Pro bond in low and high salt, while the cleavage site preferences of human renin and cathepsin-D in this substrate are altered at high salt concentrations. In addition, iodination of the tyrosine residue in this decapeptide causes an increase in the rates of hydrolysis by both PR and pepsin. However, Km values are too high to be estimated accurately for PR using Tyr-Pro and Tyr(I)-Pro decapeptides as substrates. Comparison of the digestion products of two additional decapeptides, altered in a single amino acid residue, shows that PR cleaves at fewer sites than all three cellular enzymes. Furthermore pepstatin, a strong inhibitor of pepsin, renin, and cathepsin-D has little effect on PR.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验