Douse Christopher H, Vrielink Nina, Wenlin Zhang, Cota Ernesto, Tate Edward W
Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (UK); Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ (UK); Institute of Chemical Biology, Imperial College London, South Kensington, London SW7 2AZ (UK).
ChemMedChem. 2015 Jan;10(1):134-43. doi: 10.1002/cmdc.201402357. Epub 2014 Nov 3.
Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.
能动性是恶性疟原虫复杂生命周期的一个重要特征,恶性疟原虫是一种导致人类疟疾的顶复门寄生虫。诸如宿主细胞入侵等过程被认为是由一种保守的肌动球蛋白马达(包含肌球蛋白A或肌动蛋白A)驱动的,其正确定位依赖于与寄生虫内膜上的肌球蛋白A尾域相互作用蛋白(MTIP)紧密相互作用。尽管破坏这种蛋白质 - 蛋白质相互作用是研究基于肌动蛋白A的能动性的假定作用以及抑制寄生生命周期的一种有吸引力的手段,但尚未鉴定出与MTIP结合的小分子。此外,还无法获得游离蛋白的晶体结构,该游离蛋白在没有其天然肌动蛋白A尾伴侣的情况下高度动态且不稳定。在此,我们报告通过基于片段的综合生物物理方法和结构研究从头鉴定出首批与MTIP结合并使其稳定的分子,以研究命中化合物的结合模式。文中自始至终都在探讨用传统片段筛选工作流程靶向这样一个动态系统所面临的挑战。