Suppr超能文献

酸性、金属污染溪流中废弃地下铜矿排水口处微生物“流状生长体”的演化。

Evolution of microbial "streamer" growths in an acidic, metal-contaminated stream draining an abandoned underground copper mine.

机构信息

College of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK.

Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

Life (Basel). 2013 Feb 7;3(1):189-210. doi: 10.3390/life3010189.

Abstract

A nine year study was carried out on the evolution of macroscopic "acid streamer" growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and "Ferrovum myxofaciens") and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name "Acidithrix ferrooxidans"). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes.

摘要

一项为期九年的研究针对从建造新渠道以排干废弃地下铜矿时的初始点出发,考察酸性富金属矿山水中宏观“酸性流纹”生长的演变。新渠道迅速被嗜酸细菌定殖:两种自养铁氧化菌(嗜酸硫杆菌和“嗜酸铁钩端螺旋菌”)和一种异养铁氧化菌(一种具有暂定名“嗜酸氧化亚铁硫杆菌”的新属/种)。同一细菌在整个九年期间主导酸性流纹菌群,自养物种占流纹生长物中微生物的~80%(通过末端限制性酶片段长度多态性(T-RFLP)分析确定)。随着时间的推移,酸性流纹的生物多样性变得更大,包括能够还原三价铁的异养嗜酸菌(嗜酸菌、嗜酸杆菌、嗜酸菌属和γ变形菌 WJ2)和其他自养铁氧化菌(嗜酸硫杆菌和氧化亚铁钩端螺旋菌)。酸性流纹中古菌的多样性要有限得多;获得的克隆相对较少,且都与广古菌门的已知物种关系非常远。在酸性流纹菌群和浮游细菌之间存在一些明显的差异。本研究为极端微生物群落的进化提供了独特的见解,并鉴定了几种新的嗜酸原核生物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b3/4187193/723260949166/life-03-00189-g001.jpg

相似文献

3
Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy.
Environ Microbiol. 2011 Aug;13(8):2092-104. doi: 10.1111/j.1462-2920.2011.02434.x. Epub 2011 Mar 7.
5
Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.
Environ Sci Technol. 2016 Aug 2;50(15):8239-45. doi: 10.1021/acs.est.6b02141. Epub 2016 Jul 15.
6
Microorganisms in subterranean acidic waters within Europe's deepest metal mine.
Res Microbiol. 2014 Nov;165(9):705-12. doi: 10.1016/j.resmic.2014.07.007. Epub 2014 Jul 22.
8
Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site.
FEMS Microbiol Ecol. 2009 Nov;70(2):121-9. doi: 10.1111/j.1574-6941.2009.00744.x. Epub 2009 Jul 14.
9
Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey.
Environ Sci Pollut Res Int. 2015 Apr;22(8):5995-6003. doi: 10.1007/s11356-014-3789-4. Epub 2014 Nov 9.

引用本文的文献

2
Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies.
Front Microbiol. 2023 Mar 15;14:1149903. doi: 10.3389/fmicb.2023.1149903. eCollection 2023.
4
Metagenome-Assembled Genomes of Novel Taxa from an Acid Mine Drainage Environment.
Appl Environ Microbiol. 2021 Aug 11;87(17):e0077221. doi: 10.1128/AEM.00772-21.
5
Metabolic diversity and co-occurrence of multiple Ferrovum species at an acid mine drainage site.
BMC Microbiol. 2020 May 18;20(1):119. doi: 10.1186/s12866-020-01768-w.
6
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies.
Curr Microbiol. 2020 Apr;77(4):657-674. doi: 10.1007/s00284-019-01771-z. Epub 2019 Sep 21.

本文引用的文献

1
Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.
Front Microbiol. 2012 Sep 11;3:325. doi: 10.3389/fmicb.2012.00325. eCollection 2012.
2
Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces.
Int J Syst Evol Microbiol. 2012 Aug;62(Pt 8):1902-1907. doi: 10.1099/ijs.0.033712-0.
3
Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France.
Extremophiles. 2012 Jul;16(4):645-57. doi: 10.1007/s00792-012-0466-8. Epub 2012 Jun 20.
4
Geomicrobiology of extremely acidic subsurface environments.
FEMS Microbiol Ecol. 2012 Jul;81(1):2-12. doi: 10.1111/j.1574-6941.2011.01293.x. Epub 2012 Jan 18.
5
First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina.
Microb Ecol. 2012 Jul;64(1):91-104. doi: 10.1007/s00248-011-9997-2. Epub 2012 Jan 4.
6
Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria.
Microb Biotechnol. 2012 Jan;5(1):34-44. doi: 10.1111/j.1751-7915.2011.00285.x. Epub 2011 Sep 6.
7
Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm.
ISME J. 2012 Jan;6(1):158-70. doi: 10.1038/ismej.2011.75. Epub 2011 Jun 30.
8
The iron-oxidizing proteobacteria.
Microbiology (Reading). 2011 Jun;157(Pt 6):1551-1564. doi: 10.1099/mic.0.045344-0. Epub 2011 Apr 21.
9
Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy.
Environ Microbiol. 2011 Aug;13(8):2092-104. doi: 10.1111/j.1462-2920.2011.02434.x. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验