Cocaign Angélique, Kubiak Xavier, Xu Ximing, Garnier Guillaume, Li de la Sierra-Gallay Inès, Chi-Bui Linh, Dairou Julien, Busi Florent, Abuhammad Areej, Haouz Ahmed, Dupret Jean Marie, Herrmann Jean Louis, Rodrigues-Lima Fernando
Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, 75013 Paris, France.
EA 3647, Université Versailles St Quentin en Yvelines, Garches, France.
Acta Crystallogr D Biol Crystallogr. 2014 Nov;70(Pt 11):3066-79. doi: 10.1107/S1399004714021282. Epub 2014 Oct 29.
Mycobacterium abscessus is the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies of M. abscessus proteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural and functional characterization of an arylamine N-acetyltransferase (NAT) from M. abscessus [(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significant N-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid and p-aminosalicylate. The enzyme is endogenously expressed and functional in both the rough and smooth M. abscessus morphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related to Nocardia farcinica NAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from other mycobacterial NATs were found in the active site. Peculiarities of (MYCAB)NAT1 were further supported by kinetic and docking studies showing that the enzyme was poorly inhibited by the piperidinol inhibitor of mycobacterial NATs. This study describes the first structure of an antibiotic-modifying enzyme from M. abscessus and provides bases to better understand the substrate/inhibitor-binding specificities among mycobacterial NATs and to identify/optimize specific inhibitors. These data should also contribute to the understanding of the mechanisms that are responsible for the pathogenicity and extensive chemotherapeutic resistance of M. abscessus.
脓肿分枝杆菌是致病性最强的快速生长分枝杆菌,也是对化疗药物耐药性最强的微生物之一。然而,关于脓肿分枝杆菌中可修饰/灭活抗生素的蛋白质的结构和功能研究尚不存在。在此,报道了来自脓肿分枝杆菌的一种芳胺N - 乙酰基转移酶(NAT)[(MYCAB)NAT1]的结构和功能特征。这种新型原核NAT对包括异烟肼和对氨基水杨酸等抗生素在内的芳香族底物表现出显著的N - 乙酰基转移酶活性。该酶在粗糙型和光滑型脓肿分枝杆菌形态中均有内源性表达且具有功能。(MYCAB)NAT1在1.8 Å分辨率下的晶体结构表明,它与诺卡放线菌NAT的关系比与分枝杆菌同工型的关系更密切。特别是,在活性位点发现了与其他分枝杆菌NAT的结构和物理化学差异。(MYCAB)NAT1的特性进一步得到动力学和对接研究的支持,这些研究表明该酶对分枝杆菌NAT的哌啶醇抑制剂的抑制作用较弱。本研究描述了来自脓肿分枝杆菌的一种抗生素修饰酶的首个结构,并为更好地理解分枝杆菌NAT之间的底物/抑制剂结合特异性以及鉴定/优化特异性抑制剂提供了依据。这些数据也应有助于理解导致脓肿分枝杆菌致病性和广泛化疗耐药性的机制。