Suppr超能文献

基于加权最小二乘法的快速全局图像平滑。

Fast global image smoothing based on weighted least squares.

出版信息

IEEE Trans Image Process. 2014 Dec;23(12):5638-53. doi: 10.1109/TIP.2014.2366600.

Abstract

This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications.

摘要

本文提出了一种高效的空间非均匀边缘保持图像平滑技术,称为快速全局平滑器。该方法关注由数据项和先验项(通常使用二维图像的四个或八个邻域定义)组成的稀疏拉普拉斯矩阵,能够有效地求解此类全局目标函数。具体来说,我们通过求解一系列 1D 子系统来近似定义在 d 维空间域上的内存和计算密集型大型线性系统的解。我们的可分离实现能够使用线性时间三对角矩阵算法迭代地求解 d 个三点拉普拉斯矩阵。我们的方法结合了两种最佳范式,即高效的边缘保持滤波器和基于优化的平滑方法。与快速边缘保持滤波器相比,我们的方法具有相当的运行时间,但它的全局优化公式克服了许多局部滤波方法的局限性。我们的方法还能获得与最先进的基于优化的技术相当的高质量结果,但运行速度快 10-30 倍。此外,考虑到定义目标函数的灵活性,我们进一步提出了广义快速算法,用于执行 Lγ 范数平滑(0<γ<2),并支持用于处理不精确数据约束的聚合(稳健)数据项。我们在一系列图像处理和计算机图形应用中展示了我们的技术的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验