Suppr超能文献

用于COVID-19胸部X光片细节增强的快速双边加权最小二乘法

Fast bilateral weighted least square for the detail enhancement of COVID-19 chest X-rays.

作者信息

Bian Wenyan, Yang Yang

机构信息

The Affiliated People's Hospital of Jiangsu University, Zhenjiang China.

Department of Computer Science, Jiangsu University, China.

出版信息

Digit Health. 2023 Sep 11;9:20552076231200981. doi: 10.1177/20552076231200981. eCollection 2023 Jan-Dec.

Abstract

BACKGROUND

X-ray is an effective measure in the diagnosis of coronavirus disease 2019. However, it suffers from low visibility and poor details. A plausible solution is to decompose the captured images and enhance the details. The bilateral weighted least square model can be an effective tool for this task. However, it is highly computationally expensive.

METHOD

In this article, we propose an efficient algorithm for the bilateral weighted least square model. We approximate the bilateral weight with the bilateral grid and then incorporate it into the optimization model. This significantly reduces the number of variables in the linear system. Therefore, the model can be efficiently solved. We employ the proposed algorithm to decompose the input X-rays into base and detail layers. The detail layers are then boosted and added back to the input to derive the detail-enhanced results.

RESULTS

The subjective results indicate that our method achieves higher contrast than the best-performing method (, , ). Furthermore, our method is highly efficient. It takes 0.92  s to process a 720P color image on an Intel i7-6700 CPU. The objective results derive from the chi-square test indicate that subjects hold more positive attitudes toward our detail-enhanced images than the original X-ray images (, , ).

CONCLUSION

We have conducted extensive experiments to evaluate the proposed image detail enhancement method. It can be concluded that (1) our method could significantly improve the visibility of the X-ray images. (2) our method is fast and effective, thus facilitating real applications.

摘要

背景

X射线是诊断2019冠状病毒病的一种有效手段。然而,它存在可见性低和细节不佳的问题。一个可行的解决方案是对捕获的图像进行分解并增强细节。双边加权最小二乘模型可以成为完成这项任务的有效工具。然而,其计算成本非常高。

方法

在本文中,我们为双边加权最小二乘模型提出了一种高效算法。我们用双边网格近似双边权重,然后将其纳入优化模型。这显著减少了线性系统中的变量数量。因此,可以有效地求解该模型。我们使用所提出的算法将输入的X射线分解为基础层和细节层。然后对细节层进行增强,并将其加回到输入中以获得细节增强的结果。

结果

主观结果表明,我们的方法比表现最佳的方法(,,)具有更高的对比度。此外,我们的方法效率很高。在英特尔i7-6700 CPU上处理一张720P彩色图像需要0.92秒。来自卡方检验的客观结果表明,与原始X射线图像相比,受试者对我们的细节增强图像持更积极的态度(,,)。

结论

我们进行了广泛的实验来评估所提出的图像细节增强方法。可以得出以下结论:(1)我们的方法可以显著提高X射线图像的可见性。(2)我们的方法快速有效,从而便于实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1088/10496472/8c5a1ff319f1/10.1177_20552076231200981-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验