Department of Physics and Center of Integrated Nanomechanical Systems (COINS), University of California at Berkeley , Berkeley, California 94720, United States.
Nano Lett. 2014 Dec 10;14(12):7057-63. doi: 10.1021/nl503450r. Epub 2014 Nov 17.
The bulk properties of polycrystalline materials are directly influenced by the atomic structure at the grain boundaries that join neighboring crystallites. In this work, we show that graphene grain boundaries are comprised of structural building blocks of conserved atomic bonding sequences using aberration corrected high-resolution transmission electron microscopy. These sequences appear as stretches of identically arranged periodic or aperiodic regions of dislocations. Atomic scale strain and lattice rotation of these interfaces is derived by mapping the exact positions of every carbon atom at the boundary with ultrahigh precision. Strain fields are organized into local tensile and compressive dipoles in both periodic and aperiodic dislocation regions. Using molecular dynamics tension simulations, we find that experimental grain boundary structures maintain strengths that are comparable to idealized periodic boundaries despite the presence of local aperiodic dislocation sequences.
多晶材料的宏观性质直接受到晶界处相邻晶粒结合的原子结构的影响。在这项工作中,我们使用像差校正高分辨率透射电子显微镜显示,石墨烯晶界由原子键合序列的结构构建块组成。这些序列表现为具有相同排列的周期性或非周期性位错区域的延伸。通过以超高精度映射边界处每个碳原子的精确位置,可以得出这些界面的原子尺度应变和晶格旋转。应变场在周期性和非周期性位错区域中组织成局部拉伸和压缩偶极子。通过分子动力学拉伸模拟,我们发现实验晶界结构保持的强度与理想的周期性边界相当,尽管存在局部非周期性位错序列。