Sorokin A V, Bastidas V M, Brandes T
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042141. doi: 10.1103/PhysRevE.90.042141. Epub 2014 Oct 28.
We study the quantum critical behavior of networks consisting of Lipkin-Meshkov-Glick models with an anisotropic ferromagnetic coupling. We focus on the low-energy properties of the system within a mean-field approach and the quantum corrections around the mean-field solution. Our results show that the weak-coupling regime corresponds to the paramagnetic phase when the local field dominates the dynamics, but the local anisotropy leads to the existence of an exponentially degenerate ground state. In the strong-coupling regime, the ground state is twofold degenerate and possesses long-range magnetic ordering. Analytical results for a network with the ring topology are obtained.
我们研究了由具有各向异性铁磁耦合的Lipkin-Meshkov-Glick模型组成的网络的量子临界行为。我们在平均场方法框架内关注系统的低能性质以及平均场解周围的量子修正。我们的结果表明,当局部场主导动力学时,弱耦合 regime对应于顺磁相,但局部各向异性导致存在指数简并的基态。在强耦合 regime中,基态是双重简并的并且具有长程磁有序。得到了具有环形拓扑结构的网络的解析结果。