Suppr超能文献

用于地球物理数据去噪的相干指数和曲波变换

Coherence index and curvelet transformation for denoising geophysical data.

作者信息

Dashtian Hassan, Sahimi Muhammad

机构信息

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042810. doi: 10.1103/PhysRevE.90.042810. Epub 2014 Oct 17.

Abstract

Geophysical data contain stochastic noise that may mask their useful content. For example, ground roll (GR) is a coherent noise that is present in seismic data. Thus, such data are usually a mixture of useful information and useless coherent noise. The latter masks the relevant geologic information that seismic records contain, and its removal has always been a problem of fundamental importance. We propose a denoising method based on the curvelet transformation (CT), a multiscale transformation with strong directional character that provides an optimal representation of objects that have discontinuities along their edges. An algorithm is presented for processing and denoising of geophysical data. As an example, we apply the method to seismic images that are contaminated with the GR noise. First, the coherence index (CI), which represents a measure of the amount of energy contained in the most coherent modes of Karhunen-Lòeve transform for any given segment of the data, is computed. The contaminated region of the data is then identified as the maximum region of the CI. After demarcating the contaminated segment, the CT is used to eliminate the noise. The method removes the noise with negligible distortion of the data's noncontaminated region. It is also significantly more efficient computationallty than the previous methods. The use of the method is demonstrated by its application to synthetic, as well as actual, seismic data for hydrocarbon reservoirs.

摘要

地球物理数据包含可能掩盖其有用内容的随机噪声。例如,地滚(GR)是地震数据中存在的一种相干噪声。因此,此类数据通常是有用信息和无用相干噪声的混合体。后者掩盖了地震记录所包含的相关地质信息,去除它一直是一个至关重要的问题。我们提出一种基于曲波变换(CT)的去噪方法,曲波变换是一种具有强方向性的多尺度变换,能为沿边缘具有不连续性的物体提供最优表示。本文给出了一种处理和去噪地球物理数据的算法。作为示例,我们将该方法应用于被GR噪声污染的地震图像。首先,计算相干指数(CI),它表示对于数据的任何给定片段,卡尔胡宁 - 勒夫变换的最相干模式中所含能量的量度。然后将数据的污染区域识别为CI的最大区域。在划定污染片段后,使用曲波变换来消除噪声。该方法在去除噪声的同时,数据未污染区域的失真可忽略不计。在计算效率上它也比以前的方法显著更高。通过将该方法应用于合成以及实际的油气藏地震数据,展示了该方法的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验