Dax Maximilian, Green Stephen R, Gair Jonathan, Gupte Nihar, Pürrer Michael, Raymond Vivien, Wildberger Jonas, Macke Jakob H, Buonanno Alessandra, Schölkopf Bernhard
Max Planck Institute for Intelligent Systems, Tübingen, Germany.
ETH Zurich, Zurich, Switzerland.
Nature. 2025 Mar;639(8053):49-53. doi: 10.1038/s41586-025-08593-z. Epub 2025 Mar 5.
Mergers of binary neutron stars emit signals in both the gravitational-wave (GW) and electromagnetic spectra. Famously, the 2017 multi-messenger observation of GW170817 (refs. ) led to scientific discoveries across cosmology, nuclear physics and gravity. Central to these results were the sky localization and distance obtained from the GW data, which, in the case of GW170817, helped to identify the associated electromagnetic transient, AT 2017gfo (ref. ), 11 h after the GW signal. Fast analysis of GW data is critical for directing time-sensitive electromagnetic observations. However, owing to challenges arising from the length and complexity of signals, it is often necessary to make approximations that sacrifice accuracy. Here we present a machine-learning framework that performs complete binary neutron star inference in just 1 s without making any such approximations. Our approach enhances multi-messenger observations by providing: (1) accurate localization even before the merger; (2) improved localization precision by around 30% compared to approximate low-latency methods; and (3) detailed information on luminosity distance, inclination and masses, which can be used to prioritize expensive telescope time. Additionally, the flexibility and reduced cost of our method open new opportunities for equation-of-state studies. Finally, we demonstrate that our method scales to long signals, up to an hour in length, thus serving as a blueprint for data analysis for next-generation ground- and space-based detectors.
双中子星合并会在引力波(GW)和电磁频谱中发出信号。著名的是,2017年对GW170817的多信使观测(参考文献)带来了跨越宇宙学、核物理和引力领域的科学发现。这些结果的核心是从引力波数据中获得的天空定位和距离,就GW170817而言,这有助于在引力波信号发出11小时后识别相关的电磁瞬变源AT 2017gfo(参考文献)。对引力波数据进行快速分析对于指导对时间敏感的电磁观测至关重要。然而,由于信号长度和复杂性带来的挑战,通常有必要进行一些牺牲准确性的近似处理。在此,我们提出一个机器学习框架,该框架能在仅1秒内完成完整的双中子星推断,且无需进行任何此类近似处理。我们的方法通过提供以下几点来增强多信使观测:(1)甚至在合并之前就能进行精确的定位;(2)与近似的低延迟方法相比,定位精度提高约30%;(3)提供有关光度距离、倾角和质量的详细信息,可用于确定昂贵的望远镜观测时间的优先级。此外,我们方法的灵活性和降低的成本为状态方程研究开辟了新机遇。最后,我们证明我们的方法能够扩展到长达一小时的长信号,从而为下一代地基和天基探测器的数据分析提供了蓝图。