Suppr超能文献

结合基于区域和基于不精确边界的线索进行交互式医学图像分割。

Combining region-based and imprecise boundary-based cues for interactive medical image segmentation.

作者信息

Jones Jonathan-Lee, Xie Xianghua, Essa Ehab

机构信息

Department of Computer Science, Swansea University, Swansea, UK.

出版信息

Int J Numer Method Biomed Eng. 2014 Dec;30(12):1649-66. doi: 10.1002/cnm.2693. Epub 2014 Nov 27.

Abstract

In this paper, we present an approach combining both region selection and user point selection for user-assisted segmentation as either an enclosed object or an open curve, investigate the method of image segmentation in specific medical applications (user-assisted segmentation of the media-adventitia border in intravascular ultrasound images, and lumen border in optical coherence tomography images), and then demonstrate the method with generic images to show how it could be utilized in other types of medical image and is not limited to the applications described. The proposed method combines point-based soft constraint on object boundary and stroke-based regional constraint. The user points act as attraction points and are treated as soft constraints rather than hard constraints that the segmented boundary has to pass through. The user can also use strokes to specify region of interest. The probabilities of region of interest for each pixel are then calculated, and their discontinuity is used to indicate object boundary. The combinations of different types of user constraints and image features allow flexible and robust segmentation, which is formulated as an energy minimization problem on a multilayered graph and is solved using a shortest path search algorithm. We show that this combinatorial approach allows efficient and effective interactive segmentation, which can be used with both open and closed curves to segment a variety of images in different ways. The proposed method is demonstrated in the two medical applications, that is, intravascular ultrasound and optical coherence tomography images, where image artefacts such as acoustic shadow and calcification are commonplace and thus user guidance is desirable. We carried out both qualitative and quantitative analysis of the results for the medical data; comparing the proposed method against a number of interactive segmentation techniques.

摘要

在本文中,我们提出了一种将区域选择和用户点选择相结合的方法,用于用户辅助分割,既可以分割封闭对象,也可以分割开放曲线。我们研究了特定医学应用中的图像分割方法(血管内超声图像中中膜-外膜边界的用户辅助分割以及光学相干断层扫描图像中管腔边界的用户辅助分割),然后用通用图像演示该方法,以展示其如何应用于其他类型的医学图像,而不仅限于所描述的应用。所提出的方法结合了基于点的对象边界软约束和基于笔画的区域约束。用户点作为吸引点,被视为软约束而非分割边界必须经过的硬约束。用户还可以使用笔画来指定感兴趣区域。然后计算每个像素的感兴趣区域概率,并利用其不连续性来指示对象边界。不同类型的用户约束和图像特征的组合实现了灵活且稳健的分割,这被表述为多层图上的能量最小化问题,并使用最短路径搜索算法求解。我们表明,这种组合方法允许进行高效且有效的交互式分割,可用于开放曲线和封闭曲线,以不同方式分割各种图像。在所提出的方法在两个医学应用中得到了验证,即血管内超声和光学相干断层扫描图像,在这些图像中,诸如声影和钙化等图像伪影很常见,因此需要用户引导。我们对医学数据的结果进行了定性和定量分析;将所提出的方法与多种交互式分割技术进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验