Shah Abhay, Abámoff Michael D, Wu Xiaodong
Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242, USA.
Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA.
Med Image Anal. 2019 May;54:63-75. doi: 10.1016/j.media.2019.02.004. Epub 2019 Feb 8.
Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmentation applications. However, nodes in the graph based optimal surface segmentation method typically encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space. Segmentation accuracy higher than a unit voxel is achievable by exploiting partial volume information in the voxels which shall result in non-equidistant spacing between adjoining graph nodes. This paper reports a generalized graph based multiple surface segmentation method with convex priors which can optimally segment the target surfaces in an irregularly sampled space. The proposed method allows non-equidistant spacing between the adjoining graph nodes to achieve subvoxel segmentation accuracy by utilizing the partial volume information in the voxels. The partial volume information in the voxels is exploited by computing a displacement field from the original volume data to identify the subvoxel-accurate centers within each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The smoothness of each surface modeled as a convex constraint governs the connectivity and regularity of the surface. We employ an edge-based graph representation to incorporate the necessary constraints and the globally optimal solution is obtained by computing a minimum s-t cut. The proposed method was validated on 10 intravascular multi-frame ultrasound image datasets for subvoxel segmentation accuracy. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional segmentations.
最优表面分割是一种用于在体数据集中分割多个全局最优表面的先进方法。该方法广泛应用于众多医学图像分割应用中。然而,基于图的最优表面分割方法中的节点通常对体积中均匀分布的正交体素进行编码。因此,分割精度无法超过单个单位体素,即图空间中两个相邻节点之间的距离。通过利用体素中的部分体积信息,可以实现高于单位体素的分割精度,这将导致相邻图节点之间的间距不等。本文报告了一种基于广义图的具有凸先验的多表面分割方法,该方法可以在不规则采样空间中对目标表面进行最优分割。所提出的方法允许相邻图节点之间存在不等间距,通过利用体素中的部分体积信息来实现亚体素分割精度。通过从原始体积数据计算位移场来利用体素中的部分体积信息,以识别每个体素内亚体素精确的中心,从而导致相邻图节点之间的间距不等。将每个表面的平滑度建模为凸约束,以控制表面的连通性和规则性。我们采用基于边的图表示来纳入必要的约束,并通过计算最小s-t割来获得全局最优解。所提出的方法在10个血管内多帧超声图像数据集上进行了亚体素分割精度的验证。在所有情况下,该方法都产生了高度准确的结果。我们的方法可以很容易地扩展到更高维的分割。