Suppr超能文献

在微流控环境中建模和验证群体感应介导的细菌基因表达。

Modeling and validation of autoinducer-mediated bacterial gene expression in microfluidic environments.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, USA.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, USA.

出版信息

Biomicrofluidics. 2014 Jun 17;8(3):034116. doi: 10.1063/1.4884519. eCollection 2014 May.

Abstract

Biosensors exploiting communication within genetically engineered bacteria are becoming increasingly important for monitoring environmental changes. Currently, there are a variety of mathematical models for understanding and predicting how genetically engineered bacteria respond to molecular stimuli in these environments, but as sensors have miniaturized towards microfluidics and are subjected to complex time-varying inputs, the shortcomings of these models have become apparent. The effects of microfluidic environments such as low oxygen concentration, increased biofilm encapsulation, diffusion limited molecular distribution, and higher population densities strongly affect rate constants for gene expression not accounted for in previous models. We report a mathematical model that accurately predicts the biological response of the autoinducer N-acyl homoserine lactone-mediated green fluorescent protein expression in reporter bacteria in microfluidic environments by accommodating these rate constants. This generalized mass action model considers a chain of biomolecular events from input autoinducer chemical to fluorescent protein expression through a series of six chemical species. We have validated this model against experimental data from our own apparatus as well as prior published experimental results. Results indicate accurate prediction of dynamics (e.g., 14% peak time error from a pulse input) and with reduced mean-squared error with pulse or step inputs for a range of concentrations (10 μM-30 μM). This model can help advance the design of genetically engineered bacteria sensors and molecular communication devices.

摘要

利用基因工程细菌内部通讯的生物传感器对于监测环境变化变得越来越重要。目前,有多种数学模型可用于理解和预测基因工程细菌如何对这些环境中的分子刺激做出反应,但随着传感器向微流控方向小型化并受到复杂时变输入的影响,这些模型的缺点变得明显。微流控环境的影响,如低氧浓度、增加的生物膜包封、扩散受限的分子分布以及更高的种群密度,强烈影响了以前模型中未考虑的基因表达的速率常数。我们报告了一个数学模型,该模型通过适应这些速率常数,可以准确预测自动诱导物 N-酰基高丝氨酸内酯介导的绿色荧光蛋白在微流控环境中的报告细菌中的生物反应。这个广义的质量作用模型考虑了从输入自动诱导物化学物质到荧光蛋白表达的一系列生物分子事件,通过一系列六种化学物质。我们已经使用我们自己的仪器以及先前发表的实验结果验证了该模型。结果表明,该模型可以准确预测动力学(例如,脉冲输入的峰值时间误差为 14%),并且在脉冲或阶跃输入时,均方误差减小,浓度范围为 10 μM-30 μM。该模型可以帮助推进基因工程细菌传感器和分子通信设备的设计。

相似文献

1
Modeling and validation of autoinducer-mediated bacterial gene expression in microfluidic environments.
Biomicrofluidics. 2014 Jun 17;8(3):034116. doi: 10.1063/1.4884519. eCollection 2014 May.
2
Porous monolith microfluidics for bacterial cell-to-cell communication assays.
Biomicrofluidics. 2017 Jul 31;11(4):044110. doi: 10.1063/1.4995597. eCollection 2017 Jul.
4
Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment.
Biomed Microdevices. 2016 Oct;18(5):95. doi: 10.1007/s10544-016-0120-9.
5
Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones.
J Mol Biol. 2006 Jan 13;355(2):262-73. doi: 10.1016/j.jmb.2005.10.041. Epub 2005 Nov 8.
7
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
8
Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal.
J Am Chem Soc. 2012 Mar 28;134(12):5618-26. doi: 10.1021/ja211593q. Epub 2012 Mar 16.
9
A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation.
Bull Math Biol. 2018 Nov;80(11):2917-2956. doi: 10.1007/s11538-018-0494-3. Epub 2018 Sep 14.
10
Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples.
Anal Bioanal Chem. 2008 Jul;391(5):1619-27. doi: 10.1007/s00216-008-2002-3. Epub 2008 Apr 12.

引用本文的文献

1
Intelligent deep learning model for targeted cancer drug delivery.
Sci Rep. 2025 May 30;15(1):19068. doi: 10.1038/s41598-025-96149-6.
2
Dynamics of the protein search for targets on DNA in quorum-sensing cells.
Biophys J. 2022 Jun 21;121(12):2398-2410. doi: 10.1016/j.bpj.2022.05.017. Epub 2022 May 19.
3
Porous monolith microfluidics for bacterial cell-to-cell communication assays.
Biomicrofluidics. 2017 Jul 31;11(4):044110. doi: 10.1063/1.4995597. eCollection 2017 Jul.

本文引用的文献

1
The kinetics of invertin action. 1913.
FEBS Lett. 2013 Sep 2;587(17):2712-20. doi: 10.1016/j.febslet.2013.07.015. Epub 2013 Jul 15.
2
Dynamics of the quorum sensing switch: stochastic and non-stationary effects.
BMC Syst Biol. 2013 Jan 16;7:6. doi: 10.1186/1752-0509-7-6.
3
Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer.
J Biotechnol. 2012 Oct 31;161(3):190-7. doi: 10.1016/j.jbiotec.2012.06.029. Epub 2012 Jul 10.
5
Characterization of an inducible promoter in different DNA copy number conditions.
BMC Bioinformatics. 2012 Mar 28;13 Suppl 4(Suppl 4):S11. doi: 10.1186/1471-2105-13-S4-S11.
6
Dynamics of AHL mediated quorum sensing under flow and non-flow conditions.
Phys Biol. 2012;9(2):026007. doi: 10.1088/1478-3975/9/2/026007. Epub 2012 Apr 4.
7
A sensing array of radically coupled genetic 'biopixels'.
Nature. 2011 Dec 18;481(7379):39-44. doi: 10.1038/nature10722.
8
Single cell time-resolved quorum responses reveal dependence on cell density and configuration.
J Biol Chem. 2011 Jun 17;286(24):21623-32. doi: 10.1074/jbc.M111.239897. Epub 2011 Apr 28.
9
Kinetic study of de novo chromophore maturation of fluorescent proteins.
Anal Biochem. 2011 Jul 15;414(2):173-8. doi: 10.1016/j.ab.2011.03.036. Epub 2011 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验