Suppr超能文献

基于电融合的微流控液滴串行稀释。

Electrocoalescence based serial dilution of microfluidic droplets.

机构信息

Department of Chemical Engineering, Texas Tech University, Lubbock , Texas 79409, USA.

出版信息

Biomicrofluidics. 2014 Jul 29;8(4):044111. doi: 10.1063/1.4891775. eCollection 2014 Jul.

Abstract

Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops.

摘要

在基于液滴的生物分析中,逐渐改变试剂浓度的微流控液滴的稀释是一项关键操作。在这里,我们提出了一种基于电聚并的基于液滴的稀释方案,该方案基于移动和停泊液滴之间的合并。我们研究了流体和电气参数对稀释过程的影响。即使电极通过绝缘体与流体通道隔开,使用低至 10 V 的交流信号也可以实现高度一致的聚并和精细的稀释因子分辨率。我们发现,对于低毛细数,每一次聚并事件中液滴之间的物质交换量很大。我们还观察到不同类型的聚并取决于流动和电气参数,并讨论了它们对稀释速率的影响。总的来说,我们发现控制稀释速率的关键参数是移动和停泊液滴之间聚并的持续时间。所提出的设计很简单,将通道电极集成在与流体通道相同的层中。我们的方法允许按需和控制液滴的稀释,并且足够简单,可用于需要连续稀释的测定。该方法在需要从存储的液滴中替换或清洗流体的应用中也很有用。

相似文献

1
Electrocoalescence based serial dilution of microfluidic droplets.
Biomicrofluidics. 2014 Jul 29;8(4):044111. doi: 10.1063/1.4891775. eCollection 2014 Jul.
2
Microfluidic Chamber Design for Controlled Droplet Expansion and Coalescence.
Micromachines (Basel). 2020 Apr 10;11(4):394. doi: 10.3390/mi11040394.
3
Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics.
Biomicrofluidics. 2014 Jun 25;8(3):034118. doi: 10.1063/1.4885079. eCollection 2014 May.
4
AC-electric-field-controlled multi-component droplet coalescence at microscale.
Lab Chip. 2023 May 2;23(9):2341-2355. doi: 10.1039/d3lc00086a.
5
Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators.
Lab Chip. 2009 Mar 7;9(5):709-17. doi: 10.1039/b813582g. Epub 2008 Nov 21.
6
Droplet fusion by alternating current (AC) field electrocoalescence in microchannels.
Electrophoresis. 2005 Oct;26(19):3706-15. doi: 10.1002/elps.200500109.
7
Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046303. doi: 10.1103/PhysRevE.80.046303. Epub 2009 Oct 2.
8
On-Demand Droplet Merging with an AC Electric Field for Multiple-Volume Droplet Generation.
Anal Chem. 2020 Jan 7;92(1):1147-1153. doi: 10.1021/acs.analchem.9b04219. Epub 2019 Dec 9.
9
Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions.
ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12282-12289. doi: 10.1021/acsami.7b00670. Epub 2017 Mar 30.
10
Microfluidic Study of the Electrocoalescence of Aqueous Droplets in Crude Oil.
ACS Omega. 2020 Mar 23;5(13):7348-7360. doi: 10.1021/acsomega.9b04259. eCollection 2020 Apr 7.

引用本文的文献

1
Ultrahigh-Throughput Enzyme Engineering and Discovery in Compartments.
Chem Rev. 2023 May 10;123(9):5571-5611. doi: 10.1021/acs.chemrev.2c00910. Epub 2023 May 1.
2
A droplet platform capable of handling dissimilar liquids and its application for separation of bacteria from blood.
Biomicrofluidics. 2020 May 7;14(3):034102. doi: 10.1063/5.0006111. eCollection 2020 May.
3
Microfluidic Chamber Design for Controlled Droplet Expansion and Coalescence.
Micromachines (Basel). 2020 Apr 10;11(4):394. doi: 10.3390/mi11040394.
4
Microfluidic Study of the Electrocoalescence of Aqueous Droplets in Crude Oil.
ACS Omega. 2020 Mar 23;5(13):7348-7360. doi: 10.1021/acsomega.9b04259. eCollection 2020 Apr 7.
5
Microfluidic viscometers for shear rheology of complex fluids and biofluids.
Biomicrofluidics. 2016 Jul 5;10(4):043402. doi: 10.1063/1.4955123. eCollection 2016 Jul.

本文引用的文献

1
Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics.
Biomicrofluidics. 2014 Jun 25;8(3):034118. doi: 10.1063/1.4885079. eCollection 2014 May.
2
Droplet-based microfluidics: enabling impact on drug discovery.
J Biomol Screen. 2014 Apr;19(4):483-96. doi: 10.1177/1087057113510401. Epub 2013 Nov 15.
3
Microfluidic traps for hard-wired operations on droplets.
Lab Chip. 2013 Oct 21;13(20):4096-102. doi: 10.1039/c3lc50347j. Epub 2013 Aug 22.
4
The potential impact of droplet microfluidics in biology.
Anal Chem. 2013 Apr 2;85(7):3476-82. doi: 10.1021/ac400257c. Epub 2013 Mar 15.
6
Droplet microfluidics--a tool for single-cell analysis.
Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12176-92. doi: 10.1002/anie.201200460. Epub 2012 Nov 23.
7
Electrode-free picoinjection of microfluidic drops.
Lab Chip. 2012 Oct 21;12(20):4029-32. doi: 10.1039/c2lc40693d.
9
Temperature-induced droplet coalescence in microchannels.
Biomicrofluidics. 2012 Mar;6(1):12811-128118. doi: 10.1063/1.3630124. Epub 2012 Mar 15.
10
Selective droplet coalescence using microfluidic systems.
Lab Chip. 2012 Apr 24;12(10):1800-6. doi: 10.1039/c2lc40121e. Epub 2012 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验