Suppr超能文献

在微流控停车网络中合并液滴:基于液滴的微流控多功能平台。

Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics.

机构信息

Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA.

Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79401-1021, USA.

出版信息

Biomicrofluidics. 2014 Jun 25;8(3):034118. doi: 10.1063/1.4885079. eCollection 2014 May.

Abstract

Multiwell plate and pipette systems have revolutionized modern biological analysis; however, they have disadvantages because testing in the submicroliter range is challenging, and increasing the number of samples is expensive. We propose a new microfluidic methodology that delivers the functionality of multiwell plates and pipettes at the nanoliter scale by utilizing drop coalescence and confinement-guided breakup in microfluidic parking networks (MPNs). Highly monodisperse arrays of drops obtained using a hydrodynamic self-rectification process are parked at prescribed locations in the device, and our method allows subsequent drop manipulations such as fine-gradation dilutions, reactant addition, and fluid replacement while retaining microparticles contained in the sample. Our devices operate in a quasistatic regime where drop shapes are determined primarily by the channel geometry. Thus, the behavior of parked drops is insensitive to flow conditions. This insensitivity enables highly parallelized manipulation of drop arrays of different composition, without a need for fine-tuning the flow conditions and other system parameters. We also find that drop coalescence can be switched off above a critical capillary number, enabling individual addressability of drops in complex MPNs. The platform demonstrated here is a promising candidate for conducting multistep biological assays in a highly multiplexed manner, using thousands of submicroliter samples.

摘要

多孔板和移液器系统彻底改变了现代生物学分析;然而,它们也有缺点,因为在亚微升范围内进行测试具有挑战性,并且增加样本数量的成本很高。我们提出了一种新的微流控方法,该方法通过在微流控停泊网络(MPN)中利用液滴聚并和限制引导的破裂,在纳升级范围内实现了多孔板和移液器的功能。使用流体动力自校正过程获得的高度单分散液滴阵列被停泊在设备中的预定位置,并且我们的方法允许进行后续的液滴操作,例如精细稀释、反应物添加和流体替换,同时保留样品中包含的微颗粒。我们的设备在准静态状态下运行,其中液滴形状主要由通道几何形状决定。因此,停泊液滴的行为对流动条件不敏感。这种不敏感性使得可以高度并行化地处理不同组成的液滴阵列,而无需微调流动条件和其他系统参数。我们还发现,在临界毛细管数以上可以关闭液滴聚并,从而能够对复杂 MPN 中的液滴进行单独寻址。这里展示的平台是一种很有前途的候选方案,可用于以高度多路复用的方式进行多步生物分析,使用数千个亚微升的样本。

相似文献

1
Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics.
Biomicrofluidics. 2014 Jun 25;8(3):034118. doi: 10.1063/1.4885079. eCollection 2014 May.
2
Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks.
Soft Matter. 2015 Jul 7;11(25):5122-32. doi: 10.1039/c5sm01077b.
3
Electrocoalescence based serial dilution of microfluidic droplets.
Biomicrofluidics. 2014 Jul 29;8(4):044111. doi: 10.1063/1.4891775. eCollection 2014 Jul.
4
Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities.
Small. 2020 Mar;16(9):e1904344. doi: 10.1002/smll.201904344. Epub 2019 Oct 30.
5
Mass Transfer Accompanying Coalescence of Surfactant-Laden and Surfactant-Free Drop in a Microfluidic Channel.
Langmuir. 2019 Jul 16;35(28):9184-9193. doi: 10.1021/acs.langmuir.9b00843. Epub 2019 Jul 3.
6
The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
Langmuir. 2008 Feb 19;24(4):1397-410. doi: 10.1021/la702306f. Epub 2007 Oct 27.
7
Microfluidic platform for selective microparticle parking and paired particle isolation in droplet arrays.
Biomicrofluidics. 2018 Mar 1;12(2):024102. doi: 10.1063/1.5011342. eCollection 2018 Mar.
8
Robust scalable high throughput production of monodisperse drops.
Lab Chip. 2016 Oct 18;16(21):4163-4172. doi: 10.1039/c6lc01075j.
10
Reflectivity-based evaluation of the coalescence of two condensing drops and shape evolution of the coalesced drop.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051610. doi: 10.1103/PhysRevE.70.051610. Epub 2004 Nov 30.

引用本文的文献

1
Programmable Control of Nanoliter Droplet Arrays using Membrane Displacement Traps.
Adv Mater Technol. 2023 Nov 10;8(21). doi: 10.1002/admt.202300963. Epub 2023 Aug 15.
2
Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays.
Nanoscale Adv. 2023 Apr 11;5(10):2743-2747. doi: 10.1039/d2na00765g. eCollection 2023 May 16.
3
Trapping a moving droplet train by bubble guidance in microfluidic networks.
RSC Adv. 2018 Feb 27;8(16):8787-8794. doi: 10.1039/c7ra13507f. eCollection 2018 Feb 23.
4
Microfluidic Chamber Design for Controlled Droplet Expansion and Coalescence.
Micromachines (Basel). 2020 Apr 10;11(4):394. doi: 10.3390/mi11040394.
5
A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation.
Biomicrofluidics. 2020 Feb 5;14(1):014112. doi: 10.1063/1.5143434. eCollection 2020 Jan.
6
Building Dynamic Cellular Machineries in Droplet-Based Artificial Cells with Single-Droplet Tracking and Analysis.
Anal Chem. 2019 Aug 6;91(15):9813-9818. doi: 10.1021/acs.analchem.9b01481. Epub 2019 Jul 19.
7
Coalescence Processes of Droplets and Liquid Marbles.
Micromachines (Basel). 2017 Nov 20;8(11):336. doi: 10.3390/mi8110336.
8
Deterministic trapping, encapsulation and retrieval of single-cells.
Lab Chip. 2017 Jun 27;17(13):2186-2192. doi: 10.1039/c7lc00283a.
10
Microfluidic viscometers for shear rheology of complex fluids and biofluids.
Biomicrofluidics. 2016 Jul 5;10(4):043402. doi: 10.1063/1.4955123. eCollection 2016 Jul.

本文引用的文献

1
Droplet microfluidics driven by gradients of confinement.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):853-8. doi: 10.1073/pnas.1209186110. Epub 2013 Jan 2.
2
Blood plasma separation in a long two-phase plug flowing through disposable tubing.
Lab Chip. 2012 Dec 21;12(24):5225-30. doi: 10.1039/c2lc40544j.
3
Field-free particle focusing in microfluidic plugs.
Biomicrofluidics. 2012 Jun;6(2):22008-2200810. doi: 10.1063/1.3700120. Epub 2012 Apr 11.
4
Selective droplet coalescence using microfluidic systems.
Lab Chip. 2012 Apr 24;12(10):1800-6. doi: 10.1039/c2lc40121e. Epub 2012 Mar 27.
5
Droplet microfluidics for high-throughput biological assays.
Lab Chip. 2012 Jun 21;12(12):2146-55. doi: 10.1039/c2lc21147e. Epub 2012 Feb 9.
6
High-resolution dose-response screening using droplet-based microfluidics.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):378-83. doi: 10.1073/pnas.1113324109. Epub 2011 Dec 27.
7
Microfluidic static droplet arrays with tuneable gradients in material composition.
Lab Chip. 2011 Dec 7;11(23):3949-52. doi: 10.1039/c1lc20709a. Epub 2011 Oct 12.
8
1-Million droplet array with wide-field fluorescence imaging for digital PCR.
Lab Chip. 2011 Nov 21;11(22):3838-45. doi: 10.1039/c1lc20561g. Epub 2011 Sep 29.
9
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
10
Adding precise nanoliter volume capabilities to liquid-handling automation for compound screening experimentation.
J Lab Autom. 2011 Jun;16(3):221-8. doi: 10.1016/j.jala.2010.08.006. Epub 2011 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验