Hochberg Yonit, Kuflik Eric, Volansky Tomer, Wacker Jay G
Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA and Department of Physics, University of California, Berkeley, California 94720, USA.
Department of Physics, Tel Aviv University, Tel Aviv 69978, Israel.
Phys Rev Lett. 2014 Oct 24;113(17):171301. doi: 10.1103/PhysRevLett.113.171301. Epub 2014 Oct 22.
We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.
我们提出了一种实现热遗迹暗物质的新范式。该机制出现在再加热后一个几乎隔离的暗区与标准模型热化时。冻结过程是暗区中强相互作用大质量粒子(SIMP)的数量变化3→2湮灭,并指向亚GeV暗物质。与可见区的耦合是与标准模型保持热平衡所必需的,这意味着可测量的信号,将允许通过未来的间接和直接探测实验以及对撞机上暗物质的直接产生来覆盖很大一部分参数空间。此外,3→2湮灭通常预测有相当大的2→2自相互作用,这自然地解决了“核心与尖点”以及“太大而不能失败”的小尺度结构形成问题。