INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France.
Plant Biotechnol J. 2015 May;13(4):565-77. doi: 10.1111/pbi.12282. Epub 2014 Nov 7.
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community.
鉴定控制数量性状的多态性仍然是植物遗传学家面临的挑战。多亲本高级世代互交(MAGIC)群体通过提高数量性状位点(QTL)作图的精度,为传统的连锁或关联作图群体提供了一种替代方法。在这里,我们介绍了第一个番茄 MAGIC 群体,并强调了其在种内变异、QTL 作图和因果多态性鉴定方面的潜力。该群体是通过杂交 8 个亲本系开发的,选择这些亲本系是为了包含广泛的遗传多样性,它们的基因组之前已经被重新测序。我们从 400 万个可用的 SNP 中选择了 1536 个 SNP,以增强群体中单体型预测和重组检测的准确性。与双亲群体相比,获得的连锁图谱显示重组频率增加了 87%。对于 89%的 MAGIC 系基因组,单体型起源的预测是可能的,这允许在单体型水平上检测 QTL。我们在两个温室试验中种植了该群体,并检测到了果实重量的 QTL。我们定位了三个稳定的 QTL 和六个特定位置的 QTL。最后,我们展示了当 MAGIC 群体与亲本系的全基因组测序相结合时,检测 QTL 下候选 SNP 的潜力。对于第 3 号染色体上的一个先前克隆的 QTL,我们使用每个亲本的预测等位基因效应及其基因组序列来选择支持区间中的潜在因果多态性。候选多态性的数量从 12284 个(在 800 个基因中)减少到 96 个(在 54 个基因中),包括实际的因果多态性。该群体代表了番茄遗传学社区的一个新的永久性资源。