Suppr超能文献

玉米根际土壤微生物群落的功能潜力

Functional potential of soil microbial communities in the maize rhizosphere.

作者信息

Li Xiangzhen, Rui Junpeng, Xiong Jingbo, Li Jiabao, He Zhili, Zhou Jizhong, Yannarell Anthony C, Mackie Roderick I

机构信息

Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.

Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, CAS, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, PR China.

出版信息

PLoS One. 2014 Nov 10;9(11):e112609. doi: 10.1371/journal.pone.0112609. eCollection 2014.

Abstract

Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds.

摘要

根际微生物群落对作物健康和养分循环有重大贡献。然而,它们执行重要生物地球化学过程的能力仍未得到充分描述。在这里,我们使用基于GeoChip的功能基因阵列方法,鉴定了表征根际微生物群落的重要功能基因,以了解玉米根际的代谢能力。根际和非根际土壤微生物群落之间的功能基因结构存在明显差异。大约一半检测到的基因家族在根际中显著增加(p<0.05)。基于检测到的gyrB基因,与非根际土壤相比,γ-变形菌纲、β-变形菌纲、厚壁菌门、拟杆菌门和蓝细菌在根际中最为富集。根际生态位在分解代谢途径中也支持更大的功能多样性。玉米根际中参与碳固定和降解(特别是半纤维素、芳烃和木质素)、固氮、氨化、反硝化、多聚磷酸盐生物合成和降解、硫还原和氧化的基因显著富集。这项研究表明,玉米根际是基因热点,主要来自变形菌门等优势土壤微生物群,为易分解和难分解的有机碳、氮、磷和硫化合物的转化提供功能能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/4226563/9b7af2126c13/pone.0112609.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验