Romanias Manolis N, Papadimitriou Vassileios C, Papagiannakopoulos Panos
Laboratory of Photochemistry and Kinetics, Department of Chemistry, University of Crete , 71003, Heraklion, Crete, Greece.
J Phys Chem A. 2014 Dec 4;118(48):11380-7. doi: 10.1021/jp507965m. Epub 2014 Nov 20.
The interaction of propionic and butyric acids on ice and HNO3-doped ice were studied between 195 and 212 K and low concentrations, using a Knudsen flow reactor coupled with a quadrupole mass spectrometer. The initial uptake coefficients (γ0) of propionic and butyric acids on ice as a function of temperature are given by the expressions: γ0(T) = (7.30 ± 1.0) × 10(-10) exp[(3216 ± 478)/T] and γ0(T) = (6.36 ± 0.76) × 10(-11) exp[(3810 ± 434)/T], respectively; the quoted error limits are at 95% level of confidence. Similarly, γ0 of propionic acid on 1.96 wt % (A) and 7.69 wt % (B) HNO3-doped ice with temperature are given as γ(0,A)(T) = (2.89 ± 0.26) × 10(-8) exp[(2517 ± 266)/T] and γ(0,B)(T) = (2.77 ± 0.29) × 10(-7) exp[(2126 ± 206)/T], respectively. The results show that γ0 of C1 to C4 n-carboxylic acids on ice increase with the alkyl-group length, due to lateral interactions between alkyl-groups that favor a more perpendicular orientation and well packing of H-bonded monomers on ice. The high uptakes (>10(15) molecules cm(-2)) and long recovery signals indicate efficient growth of random multilayers above the first monolayer driven by significant van der Waals interactions. The heterogeneous loss of both acids on ice and HNO3-doped ice particles in dense cirrus clouds is estimated to take a few minutes, signifying rapid local heterogeneous removal by dense cirrus clouds.
在195至212K以及低浓度条件下,使用与四极杆质谱仪联用的努森流反应器,研究了丙酸和丁酸在冰以及掺杂硝酸的冰上的相互作用。丙酸和丁酸在冰上的初始摄取系数(γ0)随温度的变化关系由以下表达式给出:γ0(T) = (7.30 ± 1.0) × 10(-10) exp[(3216 ± 478)/T] 以及γ0(T) = (6.36 ± 0.76) × 10(-11) exp[(3810 ± 434)/T],所引用的误差范围为95%置信水平。同样,丙酸在1.96重量%(A)和7.69重量%(B)掺杂硝酸的冰上的γ0随温度的变化关系分别为γ(0,A)(T) = (2.89 ± 0.26) × 10(-8) exp[(2517 ± 266)/T] 和γ(0,B)(T) = (2.77 ± 0.29) × 10(-7) exp[(2126 ± 206)/T]。结果表明,由于烷基之间的横向相互作用有利于更垂直的取向以及氢键连接的单体在冰上更好的堆积,C1至C4正羧酸在冰上的γ0随烷基链长度增加。高摄取量(>10(15) 分子·cm(-2))和长恢复信号表明,在显著的范德华相互作用驱动下,高于第一个单分子层的随机多层膜有效生长。在浓密卷云中,这两种酸在冰和掺杂硝酸的冰颗粒上的非均相损失估计需要几分钟,这意味着浓密卷云能快速进行局部非均相清除。