Hitchcock Daniel S, Fedorov Alexander A, Fedorov Elena V, Almo Steven C, Raushel Frank M
Department of Biochemistry & Biophysics and ‡Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States.
Biochemistry. 2014 Dec 2;53(47):7426-35. doi: 10.1021/bi5012767. Epub 2014 Nov 19.
5-Methylcytosine is found in all domains of life, but the bacterial cytosine deaminase from Escherichia coli (CodA) will not accept 5-methylcytosine as a substrate. Since significant amounts of 5-methylcytosine are produced in both prokaryotes and eukaryotes, this compound must eventually be catabolized and the fragments recycled by enzymes that have yet to be identified. We therefore initiated a comprehensive phylogenetic screen for enzymes that may be capable of deaminating 5-methylcytosine to thymine. From a systematic analysis of sequence homologues of CodA from thousands of bacterial species, we identified putative cytosine deaminases where a "discriminating" residue in the active site, corresponding to Asp-314 in CodA from E. coli, was no longer conserved. Representative examples from Klebsiella pneumoniae (locus tag: Kpn00632), Rhodobacter sphaeroides (locus tag: Rsp0341), and Corynebacterium glutamicum (locus tag: NCgl0075) were demonstrated to efficiently deaminate 5-methylcytosine to thymine with values of kcat/Km of 1.4 × 10(5), 2.9 × 10(4), and 1.1 × 10(3) M(-1) s(-1), respectively. These three enzymes also catalyze the deamination of 5-fluorocytosine to 5-fluorouracil with values of kcat/Km of 1.2 × 10(5), 6.8 × 10(4), and 2.0 × 10(2) M(-1) s(-1), respectively. The three-dimensional structure of Kpn00632 was determined by X-ray diffraction methods with 5-methylcytosine (PDB id: 4R85 ), 5-fluorocytosine (PDB id: 4R88 ), and phosphonocytosine (PDB id: 4R7W ) bound in the active site. When thymine auxotrophs of E. coli express these enzymes, they are capable of growth in media lacking thymine when supplemented with 5-methylcytosine. Expression of these enzymes in E. coli is toxic in the presence of 5-fluorocytosine, due to the efficient transformation to 5-fluorouracil.
5-甲基胞嘧啶存在于所有生命域中,但来自大肠杆菌的细菌胞嘧啶脱氨酶(CodA)不会将5-甲基胞嘧啶作为底物。由于原核生物和真核生物中都会产生大量的5-甲基胞嘧啶,这种化合物最终必定会被分解代谢,其片段会由尚未鉴定出的酶进行循环利用。因此,我们启动了一项全面的系统发育筛选,以寻找可能能够将5-甲基胞嘧啶脱氨生成胸腺嘧啶的酶。通过对数千种细菌物种的CodA序列同源物进行系统分析,我们鉴定出了一些假定的胞嘧啶脱氨酶,其活性位点中一个与大肠杆菌CodA中的Asp-314相对应的“识别”残基不再保守。来自肺炎克雷伯菌(基因座标签:Kpn00632)、球形红杆菌(基因座标签:Rsp0341)和谷氨酸棒杆菌(基因座标签:NCgl0075)的代表性实例被证明能够有效地将5-甲基胞嘧啶脱氨生成胸腺嘧啶,其催化常数与米氏常数的比值(kcat/Km)分别为1.4×10⁵、2.9×10⁴和1.1×10³ M⁻¹ s⁻¹。这三种酶还能催化5-氟胞嘧啶脱氨生成5-氟尿嘧啶,其kcat/Km值分别为1.2×10⁵、6.8×10⁴和2.0×10² M⁻¹ s⁻¹。通过X射线衍射方法确定了Kpn00632的三维结构,其活性位点结合了5-甲基胞嘧啶(蛋白质数据银行编号:4R85)、5-氟胞嘧啶(蛋白质数据银行编号:4R88)和膦酰胞嘧啶(蛋白质数据银行编号:4R7W)。当大肠杆菌的胸腺嘧啶营养缺陷型表达这些酶时,在添加5-甲基胞嘧啶的情况下,它们能够在缺乏胸腺嘧啶的培养基中生长。由于这些酶能高效地转化为5-氟尿嘧啶,因此在大肠杆菌中表达这些酶在5-氟胞嘧啶存在时具有毒性。