Suppr超能文献

对患者生存有利的体细胞突变在卵巢癌中占主导地位。

Somatic mutations favorable to patient survival are predominant in ovarian carcinomas.

作者信息

Zhang Wensheng, Edwards Andrea, Flemington Erik, Zhang Kun

机构信息

Department of Computer Science, Xavier University of Louisiana, New Orleans, Louisiana, United States of America.

Tulane Cancer Center, Tulane School of Medicine, New Orleans, Louisiana, United States of America.

出版信息

PLoS One. 2014 Nov 12;9(11):e112561. doi: 10.1371/journal.pone.0112561. eCollection 2014.

Abstract

Somatic mutation accumulation is a major cause of abnormal cell growth. However, some mutations in cancer cells may be deleterious to the survival and proliferation of the cancer cells, thus offering a protective effect to the patients. We investigated this hypothesis via a unique analysis of the clinical and somatic mutation datasets of ovarian carcinomas published by the Cancer Genome Atlas. We defined and screened 562 macro mutation signatures (MMSs) for their associations with the overall survival of 320 ovarian cancer patients. Each MMS measures the number of mutations present on the member genes (except for TP53) covered by a specific Gene Ontology (GO) term in each tumor. We found that somatic mutations favorable to the patient survival are predominant in ovarian carcinomas compared to those indicating poor clinical outcomes. Specially, we identified 19 (3) predictive MMSs that are, usually by a nonlinear dose-dependent effect, associated with good (poor) patient survival. The false discovery rate for the 19 "positive" predictors is at the level of 0.15. The GO terms corresponding to these MMSs include "lysosomal membrane" and "response to hypoxia", each of which is relevant to the progression and therapy of cancer. Using these MMSs as features, we established a classification tree model which can effectively partition the training samples into three prognosis groups regarding the survival time. We validated this model on an independent dataset of the same disease (Log-rank p-value < 2.3 × 10(-4)) and a dataset of breast cancer (Log-rank p-value < 9.3 × 10(-3)). We compared the GO terms corresponding to these MMSs and those enriched with expression-based predictive genes. The analysis showed that the GO term pairs with large similarity are mainly pertinent to the proteins located on the cell organelles responsible for material transport and waste disposal, suggesting the crucial role of these proteins in cancer mortality.

摘要

体细胞突变积累是细胞异常生长的主要原因。然而,癌细胞中的一些突变可能对癌细胞的存活和增殖有害,从而对患者产生保护作用。我们通过对癌症基因组图谱公布的卵巢癌临床和体细胞突变数据集进行独特分析来研究这一假设。我们定义并筛选了562个宏观突变特征(MMS),以研究它们与320例卵巢癌患者总生存期的关联。每个MMS测量每个肿瘤中由特定基因本体论(GO)术语覆盖的成员基因(TP53除外)上存在的突变数量。我们发现,与那些预示临床结果不佳的突变相比,有利于患者生存的体细胞突变在卵巢癌中占主导地位。特别地,我们确定了19个(3个)预测性MMS,它们通常通过非线性剂量依赖效应与患者良好(不良)生存相关。这19个“阳性”预测因子的错误发现率为0.15。与这些MMS对应的GO术语包括“溶酶体膜”和“缺氧反应”,每一个都与癌症的进展和治疗相关。以这些MMS为特征,我们建立了一个分类树模型,该模型可以有效地将训练样本根据生存时间划分为三个预后组。我们在同一疾病的独立数据集(对数秩p值<2.3×10^(-4))和乳腺癌数据集(对数秩p值<9.3×10^(-3))上验证了该模型。我们比较了与这些MMS对应的GO术语和那些富含基于表达的预测基因的GO术语。分析表明,相似度高的GO术语对主要与负责物质运输和废物处理的细胞器上的蛋白质相关,这表明这些蛋白质在癌症死亡率中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/4229214/3ac2ecd981ce/pone.0112561.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验