Umberger Nicole L, Caspary Tamara
Genetics and Molecular Biology Graduate Programs, Emory University School of Medicine, Atlanta, GA 30322 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322.
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322.
Mol Biol Cell. 2015 Jan 15;26(2):350-8. doi: 10.1091/mbc.E14-05-0952. Epub 2014 Nov 12.
Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.
初级纤毛由鞭毛内运输(IFT)构建和维持,其中两个IFT复合物,即IFT-A和IFT-B,分别通过驱动蛋白和动力蛋白马达携带货物进行顺行和逆行运输。许多信号通路,包括血小板衍生生长因子(PDGF)-AA/αα,都与初级纤毛相关。活跃的PDGF-AA/αα信号传导导致Akt在两个位点磷酸化:P-Akt(T308)和P-Akt(S473),先前的研究表明,顺行运输中断后,响应PDGF-AA时P-Akt(S473)会减少。在本研究中,我们通过P-Akt(T308)和P-Akt(S473)研究了不同纤毛运输突变体中的PDGF-AA/αα信号传导。我们发现在没有PDGF-AA刺激的情况下Akt磷酸化增加,我们证明这是由于PP2A对P-Akt(T308)的活性降低导致去磷酸化受损。顺行运输突变体显示低水平的血小板衍生生长因子受体(PDGFR)α,而逆行突变体表现出正常的PDGFRα水平。尽管如此,在PDGF-AA刺激后,两者均未显示P-Akt(S473)或P-Akt(T308)增加。由于雷帕霉素复合物1(mTORC1)信号传导在纤毛运输突变体细胞中增加,并且mTOR信号传导抑制PDGFRα水平,我们证明抑制mTORC1可挽救纤毛运输突变体MEF中的PDGFRα水平以及Akt(S473)和Akt(T308)的PDGF-AA依赖性磷酸化。综上所述,我们的数据表明纤毛运输对mTORC1信号传导和PP2A活性的调节在PDGF-AA/αα信号传导中起关键作用。