Cordina Nicole M, Liew Chu K, Potluri Phani R, Curmi Paul M, Fajer Piotr G, Logan Timothy M, Mackay Joel P, Brown Louise J
Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia.
Department of Molecular Cardiology and Biophysics, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
PLoS One. 2014 Nov 13;9(11):e112976. doi: 10.1371/journal.pone.0112976. eCollection 2014.
The interaction between myosin and actin in cardiac muscle, modulated by the calcium (Ca2+) sensor Troponin complex (Tn), is a complex process which is yet to be fully resolved at the molecular level. Our understanding of how the binding of Ca2+ triggers conformational changes within Tn that are subsequently propagated through the contractile apparatus to initiate muscle activation is hampered by a lack of an atomic structure for the Ca2+-free state of the cardiac isoform. We have used paramagnetic relaxation enhancement (PRE)-NMR to obtain a description of the Ca2+-free state of cardiac Tn by describing the movement of key regions of the troponin I (cTnI) subunit upon the release of Ca2+ from Troponin C (cTnC). Site-directed spin-labeling was used to position paramagnetic spin labels in cTnI and the changes in the interaction between cTnI and cTnC subunits were then mapped by PRE-NMR. The functionally important regions of cTnI targeted in this study included the cTnC-binding N-region (cTnI57), the inhibitory region (cTnI143), and two sites on the regulatory switch region (cTnI151 and cTnI159). Comparison of 1H-15N-TROSY spectra of Ca2+-bound and free states for the spin labeled cTnC-cTnI binary constructs demonstrated the release and modest movement of the cTnI switch region (∼10 Å) away from the hydrophobic N-lobe of troponin C (cTnC) upon the removal of Ca2+. Our data supports a model where the non-bound regulatory switch region of cTnI is highly flexible in the absence of Ca2+ but remains in close vicinity to cTnC. We speculate that the close proximity of TnI to TnC in the cardiac complex is favourable for increasing the frequency of collisions between the N-lobe of cTnC and the regulatory switch region, counterbalancing the reduction in collision probability that results from the incomplete opening of the N-lobe of TnC that is unique to the cardiac isoform.
心肌中肌球蛋白与肌动蛋白之间的相互作用受钙(Ca2+)传感器肌钙蛋白复合体(Tn)调节,这是一个复杂的过程,在分子水平上尚未完全解析。我们对Ca2+结合如何触发Tn内的构象变化(随后通过收缩装置传播以启动肌肉激活)的理解,因缺乏心脏同工型无Ca2+状态的原子结构而受阻。我们利用顺磁弛豫增强(PRE)-核磁共振来描述心脏Tn的无Ca2+状态,方法是描述肌钙蛋白I(cTnI)亚基在Ca2+从肌钙蛋白C(cTnC)释放时关键区域的运动。定点自旋标记用于在cTnI中定位顺磁自旋标记,然后通过PRE-核磁共振绘制cTnI和cTnC亚基之间相互作用的变化。本研究中靶向的cTnI功能重要区域包括cTnC结合N区域(cTnI57)、抑制区域(cTnI143)以及调节开关区域上的两个位点(cTnI151和cTnI159)。对自旋标记的cTnC-cTnI二元构建体的Ca2+结合态和游离态的1H-15N-TROSY光谱进行比较,结果表明在去除Ca2+后,cTnI开关区域(约10 Å)从肌钙蛋白C(cTnC)的疏水N叶释放并适度移动。我们的数据支持这样一个模型,即在无Ca2+的情况下,cTnI的未结合调节开关区域具有高度灵活性,但仍与cTnC紧密相邻。我们推测,心脏复合体中TnI与TnC的紧密相邻有利于增加cTnC的N叶与调节开关区域之间的碰撞频率,抵消因心脏同工型特有的TnC的N叶不完全打开而导致的碰撞概率降低。