Chalapat Khattiya, Timonen Jaakko V I, Huuppola Maija, Koponen Lari, Johans Christoffer, Ras Robin H A, Ikkala Olli, Oksanen Markku A, Seppälä Eira, Paraoanu G S
O. V. Lounasmaa Laboratory, Aalto University, PO Box 15100, FI-00076, Finland.
Nanotechnology. 2014 Dec 5;25(48):485707. doi: 10.1088/0957-4484/25/48/485707. Epub 2014 Nov 14.
We investigate the electromagnetic properties of assemblies of nanoscale ϵ-cobalt crystals with size range between 5 to 35 nm, embedded in a polystyrene matrix, at microwave (1-12 GHz) frequencies. We investigate the samples by transmission electron microscopy imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance (FMR) with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can be treated as non-interacting, and the peak position can be predicted from Kittel's FMR theory for non-interacting uniaxial spherical particles combined with the Landau-Lifshitz-Gilbert equation. In contrast, at low magnetic fields this magnetic order breaks down and the resonant frequency in zero magnetic field reaches a saturation value reflecting the interparticle interactions as resulting from aggregation. Our results show that the electromagnetic properties of these composite materials can be tuned by external magnetic fields and by changes in the aggregation structure.
我们研究了尺寸范围在5至35纳米之间、嵌入聚苯乙烯基质中的纳米级ε-钴晶体组件在微波(1 - 12吉赫兹)频率下的电磁特性。我们通过透射电子显微镜成像对样品进行研究,结果表明这些颗粒会聚集并形成链状和簇状结构。通过使用宽带同轴线方法,我们在1至12吉赫兹的频率范围内提取了磁导率,并研究了铁磁共振(FMR)相对于外部施加磁场的偏移。我们发现,在有限磁场下,零磁场铁磁共振峰向更高频率偏移,并且复磁导率的幅度减小。在大于2.5千奥斯特的磁场中,共振频率随施加的磁场呈线性变化,这表明转变到了一种纳米颗粒动态解耦的状态。在这种状态下,簇内的颗粒可被视为非相互作用的,并且可以根据基特尔的非相互作用单轴球形颗粒的铁磁共振理论结合朗道 - 栗弗席兹 - 吉尔伯特方程来预测峰位置。相比之下,在低磁场下这种磁序会瓦解,零磁场下的共振频率会达到一个饱和值,该值反映了由聚集导致的颗粒间相互作用。我们的结果表明,这些复合材料的电磁特性可以通过外部磁场和聚集结构的变化来调节。