Suppr超能文献

光照、温度以及测量和生长[二氧化碳]如何交互控制杂交白杨中的异戊二烯排放。

How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

作者信息

Niinemets Ülo, Sun Zhihong

机构信息

Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia

Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.

出版信息

J Exp Bot. 2015 Feb;66(3):841-51. doi: 10.1093/jxb/eru443. Epub 2014 Nov 13.

Abstract

Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size.

摘要

植物异戊二烯排放的模型假设其受光照、温度和大气[CO₂]的独立控制。然而,异戊二烯排放速率最终受其直接底物二甲基烯丙基二磷酸(DMADP)的库大小和异戊二烯合酶活性的控制,这意味着环境控制可能相互作用。此外,对生长[CO₂]的适应可改变DMADP库大小和异戊二烯合酶活性的控制比例,从而改变环境敏感性。在适应380 μmol mol⁻¹环境[CO₂]或780 μmol mol⁻¹升高[CO₂]的杂交山杨(Populus tremula × Populus tremuloides)幼树中研究了异戊二烯排放的环境控制。数据表明环境驱动因素和生长[CO₂]对异戊二烯排放有强烈的交互作用。异戊二烯排放的光增强在中等温度下最大,且在高[CO₂]生长的植物中更大,表明DMADP供应的增强更大。异戊二烯排放的最适温度在较低光照下较高,表明在较高光照下替代DMADP库被激活。此外,[CO₂]对异戊二烯排放的抑制在较高温度下消失,在高[CO₂]生长的植物中影响尤为强烈。然而,在高[CO₂]生长的植物中,预计在较高温度下DMADP库大小仍将更强烈地控制异戊二烯排放。我们认为,在未来的异戊二烯排放模型中,应在DMADP库大小层面纳入交互式环境控制和对生长[CO₂]的适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e2d/4321546/88eab3012902/exbotj_eru443_f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验