Wendland D, Ballenegger V, Alastuey A
Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR CNRS 5672, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
Institut UTINAM, Université de Franche-Comté, UMR CNRS 6213, 16, route de Gray, 25030 Besançon Cedex, France.
J Chem Phys. 2014 Nov 14;141(18):184109. doi: 10.1063/1.4900984.
We compute two- and three-body cluster functions that describe contributions of composite entities, like hydrogen atoms, ions H(-), H2(+), and helium atoms, and also charge-charge and atom-charge interactions, to the equation of state of a hydrogen-helium mixture at low density. A cluster function has the structure of a truncated virial coefficient and behaves, at low temperatures, like a usual partition function for the composite entity. Our path integral Monte Carlo calculations use importance sampling to sample efficiently the cluster partition functions even at low temperatures where bound state contributions dominate. We also employ a new and efficient adaptive discretization scheme that allows one not only to eliminate Coulomb divergencies in discretized path integrals, but also to direct the computational effort where particles are close and thus strongly interacting. The numerical results for the two-body function agree with the analytically known quantum second virial coefficient. The three-body cluster functions are compared at low temperatures with familiar partition functions for composite entities.
我们计算了两体和三体团簇函数,这些函数描述了复合实体(如氢原子、离子H(-)、H2(+)和氦原子)以及电荷-电荷和原子-电荷相互作用对低密度氢-氦混合物状态方程的贡献。团簇函数具有截断维里系数的结构,并且在低温下,其行为类似于复合实体的通常配分函数。我们的路径积分蒙特卡罗计算使用重要性抽样,即使在束缚态贡献占主导的低温下,也能有效地对团簇配分函数进行抽样。我们还采用了一种新的高效自适应离散化方案,该方案不仅可以消除离散路径积分中的库仑发散,还可以将计算资源导向粒子靠近且相互作用强烈的区域。两体函数的数值结果与已知的解析量子第二维里系数一致。在低温下,将三体团簇函数与复合实体熟悉的配分函数进行了比较。