Suppr超能文献

生物信息学能否有助于鉴别兼职蛋白?

Can bioinformatics help in the identification of moonlighting proteins?

作者信息

Hernández Sergio, Calvo Alejandra, Ferragut Gabriela, Franco Luís, Hermoso Antoni, Amela Isaac, Gómez Antonio, Querol Enrique, Cedano Juan

机构信息

*Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.

†Laboratorio de Inmunología, Universidad de la República Regional Norte-Salto, Rivera 1350, CP 50000 Salto, Uruguay.

出版信息

Biochem Soc Trans. 2014 Dec;42(6):1692-7. doi: 10.1042/BST20140241.

Abstract

Protein multitasking or moonlighting is the capability of certain proteins to execute two or more unique biological functions. This ability to perform moonlighting functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Usually, moonlighting proteins are revealed experimentally by serendipity, and the proteins described probably represent just the tip of the iceberg. It would be helpful if bioinformatics could predict protein multifunctionality, especially because of the large amounts of sequences coming from genome projects. In the present article, we describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. The sequence analysis has been performed: (i) by remote homology searches using PSI-BLAST, (ii) by the detection of functional motifs, and (iii) by the co-evolutionary relationship between amino acids. Programs designed to identify functional motifs/domains are basically oriented to detect the main function, but usually fail in the detection of secondary ones. Remote homology searches such as PSI-BLAST seem to be more versatile in this task, and it is a good complement for the information obtained from protein-protein interaction (PPI) databases. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can be used only in very restricted situations, but can suggest how the evolutionary process of the acquisition of the second function took place.

摘要

蛋白质多任务化或兼职是指某些蛋白质执行两种或更多独特生物学功能的能力。这种执行兼职功能的能力有助于我们理解细胞利用有限数量的基因执行多种复杂功能的一种方式。通常,兼职蛋白是通过偶然发现而在实验中揭示出来的,所描述的蛋白质可能只是冰山一角。如果生物信息学能够预测蛋白质的多功能性,那将是很有帮助的,特别是考虑到来自基因组计划的大量序列。在本文中,我们描述了几种利用序列、结构、相互作用组学以及当前的生物信息学算法和程序来试图解决这个问题的方法。已经进行了序列分析:(i)通过使用PSI-BLAST进行远程同源性搜索,(ii)通过检测功能基序,以及(iii)通过氨基酸之间的共进化关系。旨在识别功能基序/结构域的程序基本上是为了检测主要功能,但通常在检测次要功能方面失败。诸如PSI-BLAST之类的远程同源性搜索在这项任务中似乎更具通用性,并且它是从蛋白质-蛋白质相互作用(PPI)数据库获得的信息的良好补充。结构信息和突变相关性分析可以帮助我们绘制功能位点。突变相关性分析仅能在非常有限的情况下使用,但可以提示获得第二种功能的进化过程是如何发生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验