Suppr超能文献

方形孔径上用于波前重建的正交多项式的比较评估

Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

作者信息

Ye Jingfei, Gao Zhishan, Wang Shuai, Cheng Jinlong, Wang Wei, Sun Wenqing

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2014 Oct 1;31(10):2304-11. doi: 10.1364/JOSAA.31.002304.

Abstract

Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

摘要

目前有四种基于模态法在方形孔径上重建波前的正交多项式,即二维切比雪夫多项式、二维勒让德多项式、泽尼克方形多项式和数值多项式。它们在整个单位正方形域上都是正交的。二维切比雪夫多项式由x和y变量中的切比雪夫多项式的乘积定义,二维勒让德多项式也是如此。泽尼克方形多项式是通过格拉姆 - 施密特正交化过程推导出来的,其中整个单位正方形上的积分区域外接于单位圆。数值多项式通过数值计算获得。本研究旨在从重建精度、残余误差和鲁棒性方面通过理论分析和数值实验对这四种正交多项式进行比较。结果表明,数值正交多项式优于其他三种多项式,因为即使在波前数据不完整的情况下,它也具有高精度和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验