Sanyal Arnav, Scheffelin Joanna, Keaveny Tony M
J Biomech Eng. 2015 Jan;137(1):0110091-01100910. doi: 10.1115/1.4029109.
Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36),mechanical anisotropy (range of E3/E1¼3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension,compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space.The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal box like shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized strain space combined with a piecewise linear yield criterion in two planes for normalshear loading (mean error SD: 4.660.8% for the finite element data versus the criterion).This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.
以往关于小梁骨的多轴强度研究,要么没有考虑骨体积分数和微观结构的巨大差异,要么没有涉及完整的多轴应力状态范围。为了解决这些局限性,我们利用基于微计算机断层扫描(μCT)的非线性有限元分析,研究了取自三个解剖部位、涵盖广泛骨体积分数(0.09 - 0.36)、力学各向异性(E3/E1范围为3.0 - 12.0)和微观结构的十个(5mm立方体)人小梁骨标本的完整三维多轴破坏行为。我们发现,通过用单轴强度(纵向和横向的拉伸、压缩)的标本特定值对多轴强度进行归一化,可以解释多轴强度行为中观察到的大部分变化。当在应变空间中描述归一化多轴强度时,标本之间的离散度进一步降低。在这个归一化应变空间中,对于法向 - 法向加载,得到的多轴破坏包络线呈矩形盒状,对于法向 - 剪切加载,根据加载方向呈菱形盒状或三角形。有限元数据在6D归一化应变空间中由单一四次屈服准则以及在法向 - 剪切加载的两个平面中的分段线性屈服准则很好地描述(有限元数据与准则的平均误差标准差:4.6±0.8%)。这个归一化应变空间中的多轴屈服准则可用于描述在广泛的骨体积分数、力学各向异性和微观结构范围内人小梁骨的完整三维多轴破坏行为。