Suppr超能文献

使用氦标记对C₆H₆²⁺异构体进行双色红外预解离光谱分析。

Two-color infrared predissociation spectroscopy of C₆H₆²⁺ isomers using helium tagging.

作者信息

Jašík Juraj, Gerlich Dieter, Roithová Jana

机构信息

‡Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.

†Department of Physics, University of Technology, 09107 Chemnitz, Germany.

出版信息

J Phys Chem A. 2015 Mar 19;119(11):2532-42. doi: 10.1021/jp5088064. Epub 2014 Dec 1.

Abstract

Two-color IR-IR isomer selective predissociation spectra of helium-tagged C6H6(2+) are presented. The dications are generated via electron bombardment of either benzene or 1,3-cyclohexadiene. After mass selection they are injected into a 2.6 K cold ion trap where the presence of a dense He buffer gas not only cools them but also leads to He attachment. The ion ensemble is exposed to one or two intense IR pulses from optical parametric oscillators (OPOs) (1200-3100 cm(-1)) before it is extracted, mass analyzed, and detected. On the basis of a comparison with theoretical predictions, the resulting spectral features allow us to separate and assign different isomers of C6H6(2+) dications. Compression of the ion cloud very close to the axis of the linear quadrupole trap and coaxial superposition of well-collimated laser beams results in the fragmentation of almost all helium complexes at specific wavelengths. This unique feature enables us to record fluence-dependent attenuation curves for individual absorption bands and thus determine not only absorption cross sections but also the composition of the ion mixture.

摘要

本文展示了氦标记的C6H6(2+)的双色红外-红外异构体选择性预解离光谱。这些双阳离子通过对苯或1,3-环己二烯进行电子轰击产生。经过质量选择后,它们被注入到一个2.6K的冷离子阱中,在那里,高密度的氦缓冲气体不仅能冷却它们,还会导致氦附着。在离子系综被提取、质量分析和检测之前,先让其暴露于来自光学参量振荡器(OPO)(1200 - 3100 cm(-1))的一个或两个强红外脉冲。基于与理论预测的比较,所得光谱特征使我们能够分离并确定C6H6(2+)双阳离子的不同异构体。将离子云压缩到非常靠近线性四极阱的轴,并使准直良好的激光束同轴叠加,会导致几乎所有氦配合物在特定波长处发生碎片化。这一独特特性使我们能够记录各个吸收带的能量密度依赖型衰减曲线,从而不仅能确定吸收截面,还能确定离子混合物的组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验