Caralt M, Uzarski J S, Iacob S, Obergfell K P, Berg N, Bijonowski B M, Kiefer K M, Ward H H, Wandinger-Ness A, Miller W M, Zhang Z J, Abecassis M M, Wertheim J A
Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL; Servei Cirurgia HepatoBilioPancreatica i Trasplantaments, Hospital Universitari Vall Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain.
Am J Transplant. 2015 Jan;15(1):64-75. doi: 10.1111/ajt.12999. Epub 2014 Nov 17.
The ability to generate patient-specific cells through induced pluripotent stem cell (iPSC) technology has encouraged development of three-dimensional extracellular matrix (ECM) scaffolds as bioactive substrates for cell differentiation with the long-range goal of bioengineering organs for transplantation. Perfusion decellularization uses the vasculature to remove resident cells, leaving an intact ECM template wherein new cells grow; however, a rigorous evaluative framework assessing ECM structural and biochemical quality is lacking. To address this, we developed histologic scoring systems to quantify fundamental characteristics of decellularized rodent kidneys: ECM structure (tubules, vessels, glomeruli) and cell removal. We also assessed growth factor retention--indicating matrix biofunctionality. These scoring systems evaluated three strategies developed to decellularize kidneys (1% Triton X-100, 1% Triton X-100/0.1% sodium dodecyl sulfate (SDS) and 0.02% Trypsin-0.05% EGTA/1% Triton X-100). Triton and Triton/SDS preserved renal microarchitecture and retained matrix-bound basic fibroblast growth factor and vascular endothelial growth factor. Trypsin caused structural deterioration and growth factor loss. Triton/SDS-decellularized scaffolds maintained 3 h of leak-free blood flow in a rodent transplantation model and supported repopulation with human iPSC-derived endothelial cells and tubular epithelial cells ex vivo. Taken together, we identify an optimal Triton/SDS-based decellularization strategy that produces a biomatrix that may ultimately serve as a rodent model for kidney bioengineering.
通过诱导多能干细胞(iPSC)技术生成患者特异性细胞的能力,推动了三维细胞外基质(ECM)支架作为生物活性底物用于细胞分化的发展,其长期目标是生物工程化可移植器官。灌注去细胞化利用脉管系统去除驻留细胞,留下完整的ECM模板供新细胞生长;然而,目前缺乏一个严格评估ECM结构和生化质量的框架。为了解决这一问题,我们开发了组织学评分系统,以量化去细胞化啮齿动物肾脏的基本特征:ECM结构(肾小管、血管、肾小球)和细胞去除情况。我们还评估了生长因子保留情况——这表明了基质的生物功能。这些评分系统评估了三种用于肾脏去细胞化的策略(1% Triton X-100、1% Triton X-100/0.1%十二烷基硫酸钠(SDS)和0.02%胰蛋白酶-0.05%乙二醇双四乙酸/1% Triton X-100)。Triton和Triton/SDS保留了肾脏的微观结构,并保留了与基质结合的碱性成纤维细胞生长因子和血管内皮生长因子。胰蛋白酶导致结构恶化和生长因子丢失。在啮齿动物移植模型中,Triton/SDS去细胞化支架保持了3小时无渗漏的血流,并在体外支持人iPSC衍生的内皮细胞和肾小管上皮细胞重新填充。综上所述,我们确定了一种基于Triton/SDS的最佳去细胞化策略,该策略产生的生物基质最终可能作为肾脏生物工程的啮齿动物模型。