Suppr超能文献

葡萄糖代谢和ATP在帕金蛋白介导的线粒体损伤反应中维持PINK1水平的作用。

Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses.

作者信息

Lee Schuyler, Zhang Conggang, Liu Xuedong

机构信息

From the Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80303.

From the Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80303

出版信息

J Biol Chem. 2015 Jan 9;290(2):904-17. doi: 10.1074/jbc.M114.606798. Epub 2014 Nov 17.

Abstract

Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-D-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-D-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics.

摘要

包括PINK1和Parkin在内的多个基因发生突变,已知会导致人类常染色体隐性帕金森病。这些基因在同一途径中发挥作用,对线粒体动力学和维持起着关键作用。PINK1是将Parkin募集到线粒体并在线粒体去极化时启动线粒体自噬所必需的。在本研究中,我们表明,对羰基氰化物间氯苯腙(CCCP)引起的整体线粒体损伤,PINK1依赖的Parkin线粒体募集需要活跃的葡萄糖代谢。在无葡萄糖培养基中或CCCP处理后存在2-脱氧-D-葡萄糖的情况下,Parkin在线粒体上的积累以及随后Parkin依赖的线粒体自噬被消除。Parkin募集的缺陷与细胞内ATP水平相关,可归因于对线粒体去极化反应中PINK1上调的抑制。低水平的ATP似乎会阻止PINK1的翻译,而不是影响PINK1 mRNA的表达或降低其稳定性。与ATP对升高PINK1水平和Parkin线粒体募集的需求一致,只要在光照射细胞中存在一组功能性线粒体,即使在无葡萄糖或2-脱氧-D-葡萄糖处理的条件下,通过光照射引起的局部或单个线粒体损伤也不会影响Parkin募集到受损线粒体。因此,我们的数据确定ATP是Parkin线粒体易位和在自噬过程中维持PINK1水平升高的关键调节因子。PINK1作为一个“与”门和一个代谢传感器,将细胞的生物遗传学和应激信号与线粒体动力学联系起来。

相似文献

1
Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses.
J Biol Chem. 2015 Jan 9;290(2):904-17. doi: 10.1074/jbc.M114.606798. Epub 2014 Nov 17.
3
PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.
Toxicol Lett. 2018 Mar 1;284:120-128. doi: 10.1016/j.toxlet.2017.12.004. Epub 2017 Dec 11.
4
Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization.
Hum Mol Genet. 2011 Mar 1;20(5):927-40. doi: 10.1093/hmg/ddq531. Epub 2010 Dec 7.
7
FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy.
Autophagy. 2019 Nov;15(11):2002-2011. doi: 10.1080/15548627.2019.1603549. Epub 2019 May 7.
8
Peroxiredoxin 6 Is a Crucial Factor in the Initial Step of Mitochondrial Clearance and Is Upstream of the PINK1-Parkin Pathway.
Antioxid Redox Signal. 2016 Mar 20;24(9):486-501. doi: 10.1089/ars.2015.6336. Epub 2016 Feb 19.
9
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy.
Hum Mol Genet. 2010 Dec 15;19(24):4861-70. doi: 10.1093/hmg/ddq419. Epub 2010 Sep 24.
10
Alleviation of CCCP-induced mitochondrial injury by augmenter of liver regeneration via the PINK1/Parkin pathway-dependent mitophagy.
Exp Cell Res. 2021 Dec 1;409(1):112866. doi: 10.1016/j.yexcr.2021.112866. Epub 2021 Oct 13.

引用本文的文献

1
Stressful situations: Molecular insights on mitochondrial quality control pathways.
J Biol Chem. 2025 Jul 16;301(8):110483. doi: 10.1016/j.jbc.2025.110483.
2
Coupling of glucose metabolism with mitophagy via O-GlcNAcylation of PINK1.
Int J Biol Sci. 2025 Jun 20;21(9):4252-4269. doi: 10.7150/ijbs.112672. eCollection 2025.
4
Glucose-6-phosphate dehydrogenase regulates mitophagy by maintaining PINK1 stability.
Life Metab. 2024 Dec 13;4(1):loae040. doi: 10.1093/lifemeta/loae040. eCollection 2025 Feb.
5
Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease.
Cells. 2024 Nov 13;13(22):1876. doi: 10.3390/cells13221876.
6
Prognostic and Therapeutic Implications of Cell Division Cycle 20 Homolog in Breast Cancer.
Cancers (Basel). 2024 Jul 15;16(14):2546. doi: 10.3390/cancers16142546.
7
Identification and structural characterization of small molecule inhibitors of PINK1.
Sci Rep. 2024 Apr 2;14(1):7739. doi: 10.1038/s41598-024-58285-3.
9
High-resolution visualization and assessment of basal and OXPHOS-induced mitophagy in H9c2 cardiomyoblasts.
Autophagy. 2023 Oct;19(10):2769-2788. doi: 10.1080/15548627.2023.2230837. Epub 2023 Jul 5.
10
Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection.
Commun Biol. 2023 Apr 7;6(1):374. doi: 10.1038/s42003-023-04730-4.

本文引用的文献

1
A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial dynamics.
Cell Res. 2015 Mar;25(3):394-7. doi: 10.1038/cr.2014.159. Epub 2014 Dec 5.
2
Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin.
J Cell Biol. 2014 Sep 1;206(5):655-70. doi: 10.1083/jcb.201401070. Epub 2014 Aug 25.
3
PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions.
Curr Biol. 2014 Aug 18;24(16):1854-65. doi: 10.1016/j.cub.2014.07.014. Epub 2014 Jul 31.
4
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy.
Nature. 2014 Jun 19;510(7505):370-5. doi: 10.1038/nature13418. Epub 2014 Jun 4.
5
Mitochondrial trafficking and anchoring in neurons: New insight and implications.
J Cell Biol. 2014 Mar 31;204(7):1087-98. doi: 10.1083/jcb.201312123.
6
Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential.
Nat Rev Cancer. 2014 Apr;14(4):263-76. doi: 10.1038/nrc3701.
7
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.
EMBO J. 2014 Feb 18;33(4):282-95. doi: 10.1002/embj.201385902. Epub 2014 Jan 20.
8
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria.
Hum Mol Genet. 2014 Jan 1;23(1):145-56. doi: 10.1093/hmg/ddt407. Epub 2013 Aug 19.
9
The Paradox of Akt-mTOR Interactions.
Front Oncol. 2013 Jun 20;3:165. doi: 10.3389/fonc.2013.00165. eCollection 2013.
10
Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection.
Front Neurol. 2013 Apr 19;4:38. doi: 10.3389/fneur.2013.00038. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验