Department of Electronic and Information Engineering, The Hong Kong Polytechnic University , Hung Hom, Hong Kong.
ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20676-84. doi: 10.1021/am504250w. Epub 2014 Dec 1.
The effects of gold nanoparticles (AuNPs) incorporated in the hole transporting layer (HTL) of poly[[4,8-bis[(2-ethylhexyl)oxy] benzo[1,2-b:4,5-b'] dithiophene-2, 6-diyl] [3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophened iyl]] (PTB7): [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) based solar cells are being systematically investigated in terms of the optical properties, electrical properties, and photovoltaic performance. The impacts of AuNPs on the optical response of the devices are modeled by finite-difference time-domain (FDTD) simulation. The size of the AuNPs used in this work is around 50-70 nm, so that 10-20 nm penetrated from the HTL into the active layer. We found that the power conversion efficiencies (PCEs) of the devices with AuNPs are significantly enhanced from 7.5%, for the control device, to 8.0%, 8.1%, and 8.2% for Au nanosphere-, nanorod-, and nanocube-incorporated devices, respectively. Among the photovoltaic parameters of the AuNP devices, the short circuit current density (JSC) exhibits the largest improvement, which can be attributed to the improved optical properties of the devices. On the basis of the calculation results, the scattering cross section for the samples in the presence of AuNPs can be enhanced by a factor of ∼10(10)-10(13) and Au nanocubes exhibit superior scattering cross section compared to the Au nanospheres and nanorods with the same linear dimension. From the experimental impedance spectroscopy results, we found that the addition of AuNPs had little effect on the electrical properties of the device. The device performance is also found to be sensitive to the concentration and morphology of the AuNPs.
金纳米粒子(AuNPs)掺入空穴传输层(HTL)的聚[[4,8-双[(2-乙基己基)氧基]苯并[1,2-b:4,5-b']二噻吩-2,6-二基][3-氟-2-[(2-乙基己基)羰基]噻吩[3,4-b]噻吩二基]](PTB7):[6,6]-苯基 C71 丁酸甲酯(PC71BM)基太阳能电池的光学性能、电学性能和光伏性能正在得到系统研究。使用有限时域差分(FDTD)模拟对 AuNPs 对器件光学响应的影响进行建模。本工作中使用的 AuNPs 的尺寸约为 50-70nm,因此有 10-20nm 从 HTL 渗透到活性层。我们发现,具有 AuNPs 的器件的功率转换效率(PCE)从对照器件的 7.5%显著提高到分别掺入 Au 纳米球、纳米棒和纳米立方体的器件的 8.0%、8.1%和 8.2%。在 AuNP 器件的光伏参数中,短路电流密度(JSC)表现出最大的改善,这可以归因于器件光学性能的提高。根据计算结果,在存在 AuNPs 的情况下,样品的散射截面可以增强约 10(10)-10(13)倍,并且与具有相同线性尺寸的 Au 纳米球和纳米棒相比,Au 纳米立方体表现出优异的散射截面。从实验阻抗谱结果来看,我们发现 AuNPs 的添加对器件的电学性能影响很小。器件性能也发现对 AuNPs 的浓度和形态敏感。