Anink-Groenen Lisette C M, Maarleveld Timo R, Verschure Pernette J, Bruggeman Frank J
Swammerdam Institute for Life Science (SILS), University of Amsterdam, Science Park 904, P.O. Box 94215, 1098 GE Amsterdam, The Netherlands.
Systems Bioinformatics, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands ; Life Sciences, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands ; BioSolar Cells, Wageningen, The Netherlands.
Epigenetics Chromatin. 2014 Oct 27;7(1):30. doi: 10.1186/1756-8935-7-30. eCollection 2014.
The activity of a single gene is influenced by the composition of the chromatin in which it is embedded. Nucleosome turnover, conformational dynamics, and covalent histone modifications each induce changes in the structure of chromatin and its affinity for regulatory proteins. The dynamics of histone modifications and the persistence of modification patterns for long periods are still largely unknown.
In this study, we present a stochastic mathematical model that describes the molecular mechanisms of histone modification pattern formation along a single gene, with non-phenomenological, physical parameters. We find that diffusion and recruitment properties of histone modifying enzymes together with chromatin connectivity allow for a rich repertoire of stochastic histone modification dynamics and pattern formation. We demonstrate that histone modification patterns at a single gene can be established or removed within a few minutes through diffusion and weak recruitment mechanisms of histone modification spreading. Moreover, we show that strong synergism between diffusion and weak recruitment mechanisms leads to nearly irreversible transitions in histone modification patterns providing stable patterns. In the absence of chromatin connectivity spontaneous and dynamic histone modification boundaries can be formed that are highly unstable, and spontaneous fluctuations cause them to diffuse randomly. Chromatin connectivity destabilizes this synergistic system and introduces bistability, illustrating state switching between opposing modification states of the model gene. The observed bistable long-range and localized pattern formation are critical effectors of gene expression regulation.
This study illustrates how the cooperative interactions between regulatory proteins and the chromatin state generate complex stochastic dynamics of gene expression regulation.
单个基因的活性受其所在染色质组成的影响。核小体周转、构象动力学和组蛋白共价修饰均会引起染色质结构及其对调控蛋白亲和力的变化。组蛋白修饰的动力学以及修饰模式长时间的持续性在很大程度上仍不清楚。
在本研究中,我们提出了一个随机数学模型,该模型用非唯象的物理参数描述了单个基因上组蛋白修饰模式形成的分子机制。我们发现,组蛋白修饰酶的扩散和募集特性与染色质连通性共同促成了丰富多样的随机组蛋白修饰动力学和模式形成。我们证明,单个基因上的组蛋白修饰模式可通过组蛋白修饰扩散的扩散和弱募集机制在几分钟内建立或消除。此外,我们表明,扩散与弱募集机制之间的强协同作用导致组蛋白修饰模式几乎不可逆转的转变,从而提供稳定的模式。在没有染色质连通性的情况下,可形成高度不稳定的自发动态组蛋白修饰边界,自发波动会使其随机扩散。染色质连通性使这个协同系统不稳定并引入双稳态,说明模型基因在相反修饰状态之间发生状态转换。观察到的双稳态长程和局部模式形成是基因表达调控的关键效应器。
本研究阐明了调控蛋白与染色质状态之间的协同相互作用如何产生基因表达调控的复杂随机动力学。