Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell. 2012 Jun 22;149(7):1447-60. doi: 10.1016/j.cell.2012.03.052. Epub 2012 Jun 14.
Posttranslational histone modifications are important for gene regulation, yet the mode of propagation and the contribution to heritable gene expression states remains controversial. To address these questions, we developed a chromatin in vivo assay (CiA) system employing chemically induced proximity to initiate and terminate chromatin modifications in living cells. We selectively recruited HP1α to induce H3K9me3-dependent gene silencing and describe the kinetics and extent of chromatin modifications at the Oct4 locus in fibroblasts and pluripotent cells. H3K9me3 propagated symmetrically and continuously at average rates of ~0.18 nucleosomes/hr to produce domains of up to 10 kb. After removal of the HP1α stimulus, heterochromatic domains were heritably transmitted, undiminished through multiple cell generations. Our data enabled quantitative modeling of reaction kinetics, which revealed that dynamic competition between histone marking and turnover, determines the boundaries and stability of H3K9me3 domains. This framework predicts the steady-state dynamics and spatial features of the majority of euchromatic H3K9me3 domains over the genome.
翻译后组蛋白修饰对基因调控很重要,但其传播模式以及对可遗传基因表达状态的贡献仍存在争议。为了解决这些问题,我们开发了一种染色质体内分析(CiA)系统,该系统利用化学诱导邻近效应在活细胞中启动和终止染色质修饰。我们选择性地招募HP1α以诱导H3K9me3依赖性基因沉默,并描述成纤维细胞和多能细胞中Oct4位点染色质修饰的动力学和程度。H3K9me3以平均约0.18个核小体/小时的速率对称且连续地传播,产生长达10 kb的结构域。去除HP1α刺激后,异染色质结构域可遗传传递,在多个细胞世代中保持不变。我们的数据实现了反应动力学的定量建模,结果表明组蛋白标记和周转之间的动态竞争决定了H3K9me3结构域的边界和稳定性。该框架预测了基因组上大多数常染色质H3K9me3结构域的稳态动力学和空间特征。