Hlova Ihor Z, Gupta Shalabh, Goldston Jennifer F, Kobayashi Takeshi, Pruski Marek, Pecharsky Vitalij K
Ames Laboratory, Iowa State University, Ames, IA 500011-3020, USA.
Faraday Discuss. 2014;170:137-53. doi: 10.1039/c3fd00161j.
A mechanochemical process for the synthesis of alane (AlH3) starting from lithium hydride (LiH) and aluminium chloride (AlCl3) at room temperature and the underlying reaction pathway have been studied. In contrast to a conventional process using the same two reactants dissolved in diethyl ether, our approach enables a solvent-free synthesis, thereby directly leading to adduct-free alane. The method described here is quick and efficient, resulting in the quantitative conversion of all aluminium in the starting mixture to alane. Both the intermediate compounds formed during the reaction and the final products have been characterized by powder X-ray diffraction, solid-state (27)Al NMR spectroscopy, and temperature programmed desorption analysis of the as-milled mixtures. We show that excess LiH in the starting mixture (with an optimal ratio of 9LiH : 1AlCl3) is essential for the formation and stability of Al-H bonds, initially in the form of alanates and, eventually, as alane. Further processing of this mixture, gradually adding AlCl3 to reach the ideal 3LiH : 1AlCl3 stoichiometry, appears to restrict the local accumulation of AlCl3 during the ball-milling process, thereby preventing the formation of unstable intermediates that decompose to metallic Al and molecular hydrogen. We also demonstrate that under the milling conditions used, a moderate hydrogen pressure of ca. 300 bar is required to suppress competing reactions that lead to the formation of metallic Al at room temperature. The identification of the reaction intermediates at each stage of the synthesis provides significant insight into the mechanism of this solid-state reaction, which may potentially afford a more rational approach toward the production of AlH3 in a simple solvent-free process.
研究了一种在室温下由氢化锂(LiH)和氯化铝(AlCl3)合成铝烷(AlH3)的机械化学过程及其潜在的反应途径。与使用溶解在乙醚中的相同两种反应物的传统方法相比,我们的方法能够实现无溶剂合成,从而直接得到无加合物的铝烷。这里描述的方法快速有效,能使起始混合物中的所有铝定量转化为铝烷。通过粉末X射线衍射、固态(27)Al核磁共振光谱以及对研磨后的混合物进行程序升温脱附分析,对反应过程中形成的中间化合物和最终产物进行了表征。我们表明,起始混合物中过量的LiH(最佳比例为9LiH : 1AlCl3)对于Al - H键的形成和稳定性至关重要,最初以铝酸盐的形式存在,最终以铝烷的形式存在。对该混合物进行进一步处理,逐渐添加AlCl3以达到理想的3LiH : 1AlCl3化学计量比,似乎可以限制球磨过程中AlCl3的局部积累,从而防止形成分解为金属Al和分子氢的不稳定中间体。我们还证明,在所使用的研磨条件下,需要约300 bar的适度氢气压力来抑制在室温下导致形成金属Al的竞争反应。对合成各阶段反应中间体的鉴定为这种固态反应的机理提供了重要见解,这可能为在简单的无溶剂过程中生产AlH3提供一种更合理的方法。