Suppr超能文献

Structural determinants of Arabidopsis thaliana Hyponastic leaves 1 function in vivo.

作者信息

Burdisso Paula, Milia Fernando, Schapire Arnaldo L, Bologna Nicolás G, Palatnik Javier F, Rasia Rodolfo M

机构信息

Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina.

出版信息

PLoS One. 2014 Nov 19;9(11):e113243. doi: 10.1371/journal.pone.0113243. eCollection 2014.

Abstract

MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1b/4237382/5c65a81647a2/pone.0113243.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验