Frederick David W, Davis James G, Dávila Antonio, Agarwal Beamon, Michan Shaday, Puchowicz Michelle A, Nakamaru-Ogiso Eiko, Baur Joseph A
From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and.
Instituto Nacional de Geriatría, México, Distrito Federal 10200, México, and.
J Biol Chem. 2015 Jan 16;290(3):1546-58. doi: 10.1074/jbc.M114.579565. Epub 2014 Nov 19.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.
据报道,NAD生物合成前体烟酰胺单核苷酸和烟酰胺核糖可部分通过促进骨骼肌中的氧化代谢,赋予对高脂喂养诱导的代谢缺陷的抗性。通过种系缺失主要的NAD消耗酶也可获得类似效果,这表明NAD的生物利用度限制了最大氧化能力。然而,由于这些干预措施的全身性,尚不清楚这些干预在多大程度上发挥细胞或组织自主效应。在此,我们报告了一种组织特异性方法,即通过过表达烟酰胺磷酸核糖基转移酶(将烟酰胺转化为NAD的补救途径中的限速酶),仅在肌肉中增加NAD生物合成(mNAMPT小鼠)。这些小鼠骨骼肌中的NAD水平提高了约50%,与饮食中的NAD前体、运动方案或聚(ADP-核糖)聚合酶缺失的效果相当,但令人惊讶的是,它们的肌肉线粒体生物发生或线粒体功能没有变化,并且同样易受高脂喂养的代谢后果影响。我们进一步报告,体内肌肉NAD的慢性升高不会扰乱NAD/NADH氧化还原比。这些研究首次揭示了组织特异性增加NAD合成的代谢效应,并表明补充NAD前体的关键作用位点不在心脏和骨骼肌之外。