Suppr超能文献

通过烟酰胺磷酸核糖转移酶增加肌肉中的NAD合成不足以促进氧化代谢。

Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.

作者信息

Frederick David W, Davis James G, Dávila Antonio, Agarwal Beamon, Michan Shaday, Puchowicz Michelle A, Nakamaru-Ogiso Eiko, Baur Joseph A

机构信息

From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and.

Instituto Nacional de Geriatría, México, Distrito Federal 10200, México, and.

出版信息

J Biol Chem. 2015 Jan 16;290(3):1546-58. doi: 10.1074/jbc.M114.579565. Epub 2014 Nov 19.

Abstract

The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.

摘要

据报道,NAD生物合成前体烟酰胺单核苷酸和烟酰胺核糖可部分通过促进骨骼肌中的氧化代谢,赋予对高脂喂养诱导的代谢缺陷的抗性。通过种系缺失主要的NAD消耗酶也可获得类似效果,这表明NAD的生物利用度限制了最大氧化能力。然而,由于这些干预措施的全身性,尚不清楚这些干预在多大程度上发挥细胞或组织自主效应。在此,我们报告了一种组织特异性方法,即通过过表达烟酰胺磷酸核糖基转移酶(将烟酰胺转化为NAD的补救途径中的限速酶),仅在肌肉中增加NAD生物合成(mNAMPT小鼠)。这些小鼠骨骼肌中的NAD水平提高了约50%,与饮食中的NAD前体、运动方案或聚(ADP-核糖)聚合酶缺失的效果相当,但令人惊讶的是,它们的肌肉线粒体生物发生或线粒体功能没有变化,并且同样易受高脂喂养的代谢后果影响。我们进一步报告,体内肌肉NAD的慢性升高不会扰乱NAD/NADH氧化还原比。这些研究首次揭示了组织特异性增加NAD合成的代谢效应,并表明补充NAD前体的关键作用位点不在心脏和骨骼肌之外。

相似文献

1
Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.
J Biol Chem. 2015 Jan 16;290(3):1546-58. doi: 10.1074/jbc.M114.579565. Epub 2014 Nov 19.
3
Perturbations of NAD salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle.
Am J Physiol Endocrinol Metab. 2018 Apr 1;314(4):E377-E395. doi: 10.1152/ajpendo.00213.2017. Epub 2017 Dec 5.
4
A nicotinamide phosphoribosyltransferase-GAPDH interaction sustains the stress-induced NMN/NAD salvage pathway in the nucleus.
J Biol Chem. 2020 Mar 13;295(11):3635-3651. doi: 10.1074/jbc.RA119.010571. Epub 2020 Jan 27.
8
Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion.
PLoS One. 2014 Jun 6;9(6):e98972. doi: 10.1371/journal.pone.0098972. eCollection 2014.
10
Both gain and loss of Nampt function promote pressure overload-induced heart failure.
Am J Physiol Heart Circ Physiol. 2019 Oct 1;317(4):H711-H725. doi: 10.1152/ajpheart.00222.2019. Epub 2019 Jul 26.

引用本文的文献

1
Protein Acetylation and NAD+ Homeostasis in Aging Muscle.
Adv Exp Med Biol. 2025;1478:421-443. doi: 10.1007/978-3-031-88361-3_17.
3
Nicotinamide N-methyltransferase (NNMT): a novel therapeutic target for metabolic syndrome.
Front Pharmacol. 2024 Jun 11;15:1410479. doi: 10.3389/fphar.2024.1410479. eCollection 2024.
5
Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches.
Geroscience. 2024 Oct;46(5):5267-5286. doi: 10.1007/s11357-024-01165-5. Epub 2024 Apr 26.
6
Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death.
J Med Chem. 2024 Apr 25;67(8):5999-6026. doi: 10.1021/acs.jmedchem.3c02112. Epub 2024 Apr 5.
7
Single-cell NAD(H) levels predict clonal lymphocyte expansion dynamics.
Sci Immunol. 2024 Mar 15;9(93):eadj7238. doi: 10.1126/sciimmunol.adj7238.
10
NAD Homeostasis and NAD-Consuming Enzymes: Implications for Vascular Health.
Antioxidants (Basel). 2023 Feb 4;12(2):376. doi: 10.3390/antiox12020376.

本文引用的文献

1
NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.
Cell Metab. 2014 Jun 3;19(6):1042-9. doi: 10.1016/j.cmet.2014.04.001. Epub 2014 May 8.
2
NAD+ and sirtuins in aging and disease.
Trends Cell Biol. 2014 Aug;24(8):464-71. doi: 10.1016/j.tcb.2014.04.002. Epub 2014 Apr 29.
3
Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity.
Nature. 2014 Apr 10;508(7495):258-62. doi: 10.1038/nature13198.
4
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
EMBO Mol Med. 2014 Jun;6(6):721-31. doi: 10.1002/emmm.201403943.
6
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.
Science. 2013 Nov 1;342(6158):1243417. doi: 10.1126/science.1243417. Epub 2013 Sep 19.
9
10
Visfatin/Nampt: an adipokine with cardiovascular impact.
Mediators Inflamm. 2013;2013:946427. doi: 10.1155/2013/946427. Epub 2013 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验