Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Nestlé Institute of Health Sciences (NIHS), Lausanne, CH-1015, Switzerland; Ecole Polytechnique Fédérale de Lausanne, Switzerland.
Mol Metab. 2017 May 29;6(8):819-832. doi: 10.1016/j.molmet.2017.05.011. eCollection 2017 Aug.
OBJECTIVE: Augmenting nicotinamide adenine dinucleotide (NAD) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD. Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. METHODS: We exploited expression profiling of muscle NAD biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD recycling to evaluate NMN and NR utilization. RESULTS: Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD. NAMPT inhibition depletes muscle NAD availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD. Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD availability. CONCLUSIONS: These results identify skeletal muscle cells as requiring NAMPT to maintain NAD availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD availability.
目的:增加烟酰胺腺嘌呤二核苷酸(NAD)的可用性可能有助于保护骨骼肌免受与年龄相关的代谢衰退。膳食补充 NAD 前体烟酰胺单核苷酸(NMN)和烟酰胺核苷(NR)似乎可以有效地提高肌肉 NAD。在这里,我们试图确定骨骼肌细胞从 NMN 和 NR 合成 NAD 的途径,并深入了解肌肉代谢稳态的机制。
方法:我们利用肌肉 NAD 生物合成途径的表达谱、单和双烟酰胺核糖核苷激酶 1/2(NRK1/2)功能丧失小鼠,以及肌肉 NAD 再循环的药理学抑制来评估 NMN 和 NR 的利用。
结果:骨骼肌细胞主要依赖烟酰胺磷酸核糖转移酶(NAMPT)、NRK1 和 NRK2 进行 NAD 的补救生物合成。NAMPT 抑制会耗尽肌肉 NAD 的可用性,而 NR 和 NMN 可以作为提高肌肉细胞 NAD 的首选前体来挽救,这一途径依赖于 NRK1 和 NRK2。Nrk2 敲除小鼠正常发育,其 NAD+代谢组和相关基因的表达仅略有改变。NRK1、NRK2 和双 KO 肌管显示出 NRK 依赖的 NR 代谢到 NAD 的冗余。重要的是,这些模型表明 NMN 补充也依赖于 NRK 活性来增强 NAD 的可用性。
结论:这些结果表明骨骼肌细胞需要 NAMPT 来维持 NAD 的可用性,并揭示 NRK1 和 2 在从外源性 NR 和 NMN 中回收以增加细胞内 NAD 可用性方面具有重叠功能。
Cell Metab. 2017-12-14
Adv Exp Med Biol. 2025
Skelet Muscle. 2025-8-22
NPJ Metab Health Dis. 2025-6-18
Sci Transl Med. 2016-10-19
Nat Commun. 2016-10-10
Sci Rep. 2016-5-27