Lindner Jonas, Zielonka Simon, Oechsner Hans, Lemmer Andreas
a State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim , Garbenstraße 9, Stuttgart 70599 , Germany.
Environ Technol. 2015 Jan-Feb;36(1-4):198-207. doi: 10.1080/09593330.2014.941944. Epub 2014 Aug 4.
In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology without the use of additives was developed in which the pH-regulation is executed by the pH-dependent recycling of effluent from the anaerobic filter into the acidification reactor. During this investigation, the influence of the different target pH-values (5.5, 6.0, 7.0 and 7.5) on the degradation rate, the gas composition and the methane yield of the substrate maize silage was determined. With an increase in the target pH-value from 5.5 to 7.5, the acetic acid equivalent decreased by 88.1% and the chemical oxygen demand-concentration by 18.3% in the hydrolysate. In response, there was a 58% increase in the specific methane yield of the overall system. Contrary to earlier studies, a marked increase in biogas production and in substrate degradation was determined with increasing pH-values. However, these led to a successive approximation of a single-phase process. Based on these results, pH-values above 7.0 seem to be favourable for the digestion of fibre-rich substrates.
在许多出版物中,初级发酵被描述为富含纤维生物质厌氧消化的一个限制步骤[伊斯特曼JA,弗格森JF。厌氧消化过程中颗粒碳的溶解。《水污染控制联合会杂志》。1981年;53:352 - 366;野池T,远藤G,张J,矢口J,松本J。碳水化合物降解特性及厌氧消化中的限速步骤。《生物技术与生物工程》。1985年;27:从1482 - 1489;阿恩茨HJ,斯托波克E,布赫霍尔茨K。甜菜粕的厌氧水解——连续实验。《生物技术通讯》。1985年;7:113 - 118]。初级发酵过程中的微生物与产甲烷微生物有很大不同[波兰德FG,戈什S。有机废物厌氧稳定化的进展——两相概念。《环境快报》。1971年;1:255 - 266]。为了优化沼气工艺,许多作者建议将其分为两个阶段[福克斯P, 波兰德GK。厌氧处理的应用与基础:相分离过程中的底物特异性。《水环境研究》。1994年;66:716 - 724;科恩A,措特迈耶RJ,范德森A,范安德尔JG。通过分离产酸和产甲烷过程厌氧消化葡萄糖。《水研究》。1979年;13:571 - 580]。为了进行这项研究,建立了一个带有物理相分离的两相实验室规模沼气厂。在之前的研究中,产酸过程中的pH值调节通常通过添加氢氧化钠来实现[科恩A,措特迈耶RJ,范德森A,范安德尔JG。通过分离产酸和产甲烷过程厌氧消化葡萄糖。《水研究》。1979年;13:571 - 580;上野Y,多田M,福井H,牧内T,后藤M,索德K。通过厌氧过程的相分离从有机固体废物中生产氢气和甲烷。《生物资源技术》。2007年;98:1861 - 1865;措特迈耶RJ,范登赫维尔JC,科恩A。pH值对厌氧消化器中葡萄糖产酸异化作用的影响。《水研究》。1982年;16:303 - 311]。开发了一种不使用添加剂的新技术,其中pH值调节是通过将厌氧滤池的出水以pH值依赖的方式循环至酸化反应器来实现的。在这项研究中,测定了不同目标pH值(5.5、6.0、7.0和7.5)对底物玉米青贮的降解率、气体组成和甲烷产量的影响。随着目标pH值从5.5增加到7.5,水解产物中的乙酸当量降低了88.1%,化学需氧量浓度降低了18.3%。相应地,整个系统的比甲烷产量增加了58%。与早期研究相反,随着pH值的增加,沼气产量和底物降解量显著增加。然而,这些导致了向单相过程的逐渐接近。基于这些结果,pH值高于7.0似乎有利于富含纤维底物的消化。