Universität des Saarlandes, Experimentalphysik, Campus E2 6, 66123 Saarbrücken, Germany.
Nat Commun. 2014 Nov 21;5:5527. doi: 10.1038/ncomms6527.
A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.
量子网络结合了量子系统在安全信息传输和计算加速方面的优势,通过利用量子相干性和纠缠来存储、传输和处理信息。原子量子存储器和处理器,通过光子量子通道相互连接,是实现这种网络的一个很有前途的平台。在这种情况下,一个关键的构建模块是通过受控发射和吸收,在单个光子和单个原子之间转换量子态。这里我们提出了一种光子到原子量子态转换的实验方案,其中吸收光子的偏振态以>95%的保真度映射到单个吸收原子的自旋态,而成功的转换由单个发射光子来标记。无干扰地实现高保真度转换是实验的主要挑战,以便为进一步的操作提供可靠的转移信息。我们在 18000 次重复中记录了>80 s(-1)次成功的状态转移事件。