Cooper Bridgette, Kolorenč Přemysl, Frasinski Leszek J, Averbukh Vitali, Marangos Jon P
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2BB, UK.
Faraday Discuss. 2014;171:93-111. doi: 10.1039/c4fd00051j. Epub 2014 Sep 5.
Ultrafast hole dynamics created in molecular systems as a result of sudden ionisation is the focus of much attention in the field of attosecond science. Using the molecule glycine we show through ab initio simulations that the dynamics of a hole, arising from ionisation in the inner valence region, evolves with a timescale appropriate to be measured using X-ray pulses from the current generation of SASE free electron lasers. The examined pump-probe scheme uses X-rays with photon energy below the K edge of carbon (275-280 eV) that will ionise from the inner valence region. A second probe X-ray at the same energy can excite an electron from the core to fill the vacancy in the inner-valence region. The dynamics of the inner valence hole can be tracked by measuring the Auger electrons produced by the subsequent refilling of the core hole as a function of pump-probe delay. We consider the feasibility of the experiment and include numerical simulation to support this analysis. We discuss the potential for all X-ray pump-X-ray probe Auger spectroscopy measurements for tracking hole migration.
由突然电离在分子系统中产生的超快空穴动力学是阿秒科学领域备受关注的焦点。我们使用甘氨酸分子,通过从头算模拟表明,内价区电离产生的空穴动力学演化的时间尺度适合用当前一代自放大自发辐射自由电子激光产生的X射线脉冲进行测量。所研究的泵浦-探测方案使用光子能量低于碳的K边(275 - 280 eV)的X射线,这种X射线将从内价区电离。具有相同能量的第二个探测X射线可以激发一个电子从核心跃迁以填补内价区的空位。通过测量随后核心空穴重新填充产生的俄歇电子作为泵浦-探测延迟的函数,可以追踪内价空穴的动力学。我们考虑了该实验的可行性,并进行了数值模拟以支持这一分析。我们讨论了所有X射线泵浦-X射线探测俄歇光谱测量用于追踪空穴迁移的潜力。