Department of Chemistry, French Family Science Center, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States.
J Am Chem Soc. 2014 Dec 17;136(50):17561-9. doi: 10.1021/ja5097418. Epub 2014 Dec 8.
The syntheses, potentiometric responses, optical spectra, electronic structural properties, and integration into photovoltaic devices are described for ethyne-bridged isoindigo-(porphinato)zinc(II)-isoindigo chromophores built upon either electron-rich 10,20-diaryl porphyrin (Ar-Iso) or electron-deficient 10,20-bis(perfluoroalkyl)porphyrin (Rf-Iso) frameworks. These supermolecules evince electrochemical responses that trace their geneses to their respective porphyrinic and isoindigoid subunits. The ethyne linkage motif effectively mixes the comparatively weak isoindigo-derived visible excitations with porphyrinic π-π* states, endowing Ar-Iso and Rf-Iso with high extinction coefficient (ε ∼ 10(5) M(-1)·cm(-1)) long-axis polarized absorptions. Ar-Iso and Rf-Iso exhibit total absorptivities per unit mass that greatly exceed that for poly(3-hexyl)thiophene (P3HT) over the 375-900 nm wavelength range where solar flux is maximal. Time-dependent density functional theory calculations highlight the delocalized nature of the low energy singlet excited states of these chromophores, demonstrating how coupled oscillator photophysics can yield organic photovoltaic device (OPV) materials having absorptive properties that supersede those of conventional semiconducting polymers. Prototype OPVs crafted from the poly(3-hexyl)thiophene (P3HT) donor polymer and these new materials (i) confirm that solar power conversion depends critically upon the driving force for photoinduced hole transfer (HT) from these low-band-gap acceptors, and (ii) underscore the importance of the excited-state reduction potential (E(-/*)) parameter as a general design criterion for low-band-gap OPV acceptors. OPVs constructed from Rf-Iso and P3HT define rare examples whereby the acceptor material extends the device operating spectral range into the NIR, and demonstrate for the first time that high oscillator strength porphyrinic chromophores, conventionally utilized as electron donors in OPVs, can also be exploited as electron acceptors.
描述了乙炔桥联异吲哚-(卟啉)锌(II)-异吲哚发色团的合成、电位响应、光学光谱、电子结构性质以及将其整合到光伏器件中,这些发色团基于富电子 10,20-二芳基卟啉(Ar-Iso)或缺电子 10,20-双(全氟烷基)卟啉(Rf-Iso)框架。这些超分子表现出的电化学响应可追溯到它们各自的卟啉和异吲哚部分。乙炔连接基有效地将相对较弱的异吲哚衍生的可见光激发与卟啉的π-π态混合,赋予 Ar-Iso 和 Rf-Iso 高消光系数(ε∼10(5) M(-1)·cm(-1))的长轴极化吸收。Ar-Iso 和 Rf-Iso 的单位质量总吸光度大大超过了聚(3-己基)噻吩(P3HT)在太阳能最丰富的 375-900nm 波长范围内的吸光度。时间相关密度泛函理论计算突出了这些发色团低能量单重激发态的离域性质,展示了耦合振子光物理如何产生具有吸收性能的有机光伏器件(OPV)材料,其吸收性能超过传统半导体聚合物。由聚(3-己基)噻吩(P3HT)供体聚合物和这些新材料制成的原型 OPV(i)证实了太阳能转换取决于这些低带隙受体光诱导空穴转移(HT)的驱动力,(ii)强调了激发态还原电位(E(-/))参数作为低带隙 OPV 受体的一般设计标准的重要性。由 Rf-Iso 和 P3HT 制成的 OPV 定义了罕见的例子,其中受体材料将器件工作光谱范围扩展到近红外,并且首次证明了高振子强度卟啉发色团,通常用作 OPV 中的电子供体,也可以被用作电子受体。