Rubtsov Igor V, Susumu Kimihiro, Rubtsov Grigorii I, Therien Michael J
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
J Am Chem Soc. 2003 Mar 5;125(9):2687-96. doi: 10.1021/ja021157p.
The excited-state dynamics of two conjugated bis[(porphinato)zinc(II)] (bis[PZn]) species, bis[(5,5'-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]ethyne (DD) and [(5,-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]-[(5',-15'-ethynyl-10',20'-bis(heptafluoropropyl)porphinato)zinc(II)]ethyne (DA), were studied by pump-probe transient absorption spectroscopy and hole burning techniques. Both of these meso-to-meso ethyne-bridged bis[PZn] compounds display intense near-infrared (NIR) transient S(1)-->S(n) absorptions and fast relaxation of their initially prepared, electronically excited Q states. Solvational and conformational relaxation play key roles in both DD and DA ground- and excited-state dynamics; in addition to these processes that drive spectral diffusion, electronically excited DA manifests a 3-fold diminution of S(1)-->S(0) oscillator strength on a 2-20 ps time scale. Both DD and DA display ground-state and time-dependent excited-state conformational heterogeneity; hole burning experiments show that this conformational heterogeneity is reflected largely by the extent of porphyrin-porphyrin conjugation, which varies as a function of the pigment-pigment dihedral angle distribution. While spectral diffusion can be seen for both compounds, rotational dynamics driving configurational averaging (tau approximately 30 ps), along with a small solvational contribution, account for essentially all of the spectral changes observed for electronically excited DD. For DA, supplementary relaxation processes play key roles in the excited-state dynamics. Two fast solvational components (0.27 and 1.7 ps) increase the DA excited-state dipole moment and reduce concomitantly the corresponding S(1)-->S(0) transition oscillator strength; these data show that these effects derive from a time-dependent change of the degree of DA S(1)-state polarization, which is stimulated by solvation and enhanced excited-state inner-sphere structural relaxation.
通过泵浦 - 探测瞬态吸收光谱和烧孔技术研究了两种共轭双[(卟啉基)锌(II)](双[PZn])物种,双[(5,5'-10,20 - 双[3,5 - 双(3,3 - 二甲基 - 1 - 丁氧基)phenyl]卟啉基)锌(II)]乙炔(DD)和[(5,-10,20 - 双[3,5 - 双(3,3 - 二甲基 - 1 - 丁氧基)phenyl]卟啉基)锌(II)] - [(5',-15'-乙炔基 - 10',20'-双(七氟丙基)卟啉基)锌(II)]乙炔(DA)的激发态动力学。这两种中位至中位乙炔桥连的双[PZn]化合物均显示出强烈的近红外(NIR)瞬态S(1)→S(n)吸收以及其初始制备的电子激发Q态的快速弛豫。溶剂化和构象弛豫在DD和DA的基态和激发态动力学中均起关键作用;除了这些驱动光谱扩散的过程外,电子激发的DA在2 - 20 ps时间尺度上表现出S(1)→S(0)振子强度降低了3倍。DD和DA均表现出基态和时间相关的激发态构象异质性;烧孔实验表明,这种构象异质性在很大程度上由卟啉 - 卟啉共轭程度反映,其随色素 - 色素二面角分布而变化。虽然两种化合物都能观察到光谱扩散,但驱动构型平均的旋转动力学(τ约为30 ps)以及较小的溶剂化贡献基本上解释了电子激发的DD所观察到的所有光谱变化。对于DA,补充弛豫过程在激发态动力学中起关键作用。两个快速溶剂化组分(0.27和1.7 ps)增加了DA激发态偶极矩并相应地降低了S(1)→S(0)跃迁振子强度;这些数据表明,这些效应源于DA S(Ⅰ)态极化程度的时间依赖性变化,这是由溶剂化和增强的激发态内球结构弛豫所激发的。